Math, asked by tokamleshjain, 1 year ago

The coordinate of the vertices of triangle ABC are A(7,2) ,B(9,10) and C (1,4) if E and F are mid points of AB and AC respectively prove that EF=1/2 BC

Answers

Answered by SQUARE3
172
hope this is correct
Attachments:
Answered by seelamahit912
4

To prove EF=1/2 BC.

Step-by-step explanation:

Given:

The coordinate of the vertices of the triangle ABC are

A(7,2)

B(9,10)

C (1,4)

Midpoint of AB and AC  =E,F

To Find:

To prove that EF=1/2 BC.

Formula used:

E(x)=\frac{x_{1}+y_{1}  }{2} +\frac{x_{2}+y_{2}  }{2}, F(x)=\frac{x_{1}+y_{1}  }{2} +\frac{x_{2}+y_{2}  }{2}

Solution:

Step 1:

Find the coordinate points E.

Now applyE(x)=\frac{x_{1}+y_{1}  }{2} +\frac{x_{2}+y_{2}  }{2}

A(7,2) ,B(9,10)

(x_{1} y_{1} )=\frac{9+7}{2}+\frac{10+2}{2}

(x_{1} y_{1} )=(8,6)

Step 2:

Now find the coordinate points F

Now apply F(x)=\frac{x_{1}+y_{1}  }{2} +\frac{x_{2}+y_{2}  }{2}

C (1,4), A(7,2)

(x_{2} ,y_{2} )=\frac{7+1}{2},\frac{2+4}{2}

(x_{2} ,y_{2} )=(4,3)

Step 3:

Find the length EF.

EF=\sqrt{(x_{1}+y_{1} )^{2}+(x_{2}+y_{2})^{2}

EF=\sqrt{(8-4 )^{2}+(6-3)^{2}

EF=\sqrt{(4 )^{2}+(3)^{2}

EF=\sqrt{16+9}

EF=\sqrt{25}

EF=5unit(1)

Step 4:

Now find the length BC

BC=\sqrt{(x_{1}+y_{1} )^{2}+(x_{2}+y_{2})^{2}

BC=\sqrt{(9-1 )^{2}+(10-4)^{2}

BC=\sqrt{(8)^{2}+(6)^{2}

BC=\sqrt{64+36}

BC=\sqrt{100}

BC=10unit(2)

From the equation (1) and (2), we get

EF=1/2 BC

Hence proved.

#SPJ2

Attachments:
Similar questions