Math, asked by shawmanju3034, 11 months ago

the coordinates of a particle moving in a plane are given by x=4cos6t and y=6sin6t.find the equation of the path of the particle​

Answers

Answered by MaheswariS
2

Answer:

\bf{(\frac{x}{4})^{\frac{1}{3}}+(\frac{y}{6})^{\frac{1}{3}}=1}

Step-by-step explanation:

\text{Given:}

x=4\:cos^6t\:and\:y=6\:sin^6t

\implies\:\frac{x}{4}=cos^6t\:and\:\frac{y}{6}=sin^6t

\implies\:(\frac{x}{4})^{\frac{1}{3}}=(cos^6t)^{\frac{1}{3}}\:and\:(\frac{y}{6})^{\frac{1}{3}}=(sin^6t)^{\frac{1}{3}}

\implies\:(\frac{x}{4})^{\frac{1}{3}}=cos^2t\:and\:(\frac{y}{6})^{\frac{1}{3}}=sin^2t

Adding these equations

(\frac{x}{4})^{\frac{1}{3}}+(\frac{y}{6})^{\frac{1}{3}}=cos^2t+sin^2t

\implies\:\bf{(\frac{x}{4})^{\frac{1}{3}}+(\frac{y}{6})^{\frac{1}{3}}=1}

Similar questions