Physics, asked by mussupastor84, 11 months ago

The coordinates of a particle's motion on a curve is
-governed by equations x = 2 sint y = 3 cost,
Z = v5 sint. The magnitude of velocity of particle at
time t is
(1) 312 sint unit (2) 3 unit
(3) 3J2 cost unit (4) 3J2 unit
--
2
Jssin​

Answers

Answered by nirman95
4

Given:

The coordinates of a particle's motion on a curve is:

x = 2 \sin(t)

y = 3 \cos(t)

z = 5 \sin(t)

To find:

Velocity of particle at time t;

Calculation:

Velocity along x axis:

v_{x} =  \dfrac{dx}{dt}

 =  > v_{x} =  \dfrac{d \{2 \sin(t)  \}}{dt}

 =  > v_{x} = 2 \dfrac{d \{ \sin(t)  \}}{dt}

 =  > v_{x} = 2  \cos(t)

Velocity along y axis:

v_{y} =  \dfrac{dy}{dt}

 =  > v_{y} =  \dfrac{d \{3 \cos(t)  \}}{dt}

 =  > v_{y} =  3\dfrac{d \{ \cos(t)  \}}{dt}

 =  > v_{y} = -   3 \sin(t)

Velocity along z axis:

v_{z} =  \dfrac{dz}{dt}

 =  > v_{z} =  \dfrac{d \{5 \sin(t)  \}}{dt}

 =  > v_{z} =  5\dfrac{d \{ \sin(t)  \}}{dt}

 =  > v_{z} =  5 \cos(t)

Net Velocity:

v_{net} =  \sqrt{ { \{2 \cos(t)  \}}^{2}  +  { \{ - 3 \sin(t)  \}}^{2}  +  { \{5 \sin(t)  \}}^{2} }

 =  > v_{net} =  \sqrt{ 29 { \cos}^{2}(t)  + 9 { \sin}^{2}(t) }

 =  > v_{net} =  \sqrt{  \{9 { \cos}^{2}(t)  + 9 { \sin}^{2}(t) \} + 20 { \cos}^{2} (t) }

 =  > v_{net} =  \sqrt{ 9 +  20 { \cos}^{2} (t) }

 =  > v_{net} =  \sqrt{ 9 +  20  \{1 - { \sin}^{2} (t)  \}}

 =  > v_{net} =  \sqrt{ 29 - 20{ \sin}^{2} (t)  }

So, final answer is:

 \boxed{ \sf{ v_{net} =  \sqrt{ 29 - 20{ \sin}^{2} (t)  } }}

Similar questions