Physics, asked by 6352096590, 9 months ago

The coordinates of a particle's motion on a curve is
governed by equations x = - 2 sin t, y = 3 cost,
5 sint. The magnitude of velocity of particle at
time tis
Z=

Answers

Answered by nirman95
2

Given:

The coordinates of a particle's motion on a curve is governed by equations x = - 2 sin(t), y = 3 cos(t)

To find:

Magnitude of Velocity of particle at time t

Calculation:

Velocity function can be obtained by single differentiation of Displacement function;

On x axis:

x =  - 2 \sin(t)

 =  > v_{x} =  \dfrac{dx}{dt}

 =  > v_{x} =  \dfrac{d \{ - 2 \sin(t)  \}}{dt}

 =  > v_{x} =   - 2 \cos(t)

Again , on y axis:

y = 3 \cos(t)

 =  > v_{y} =  \dfrac{dy}{dt}

 =  > v_{y} =  \dfrac{d \{3 \cos(t)  \}}{dt}

 =  > v_{y} =  - 3 \sin(t)

So, Velocity at time t ;

v_{net} =  \sqrt{ ({v_{x})}^{2} +  {(v_{y})}^{2}  }

 =  > v_{net} =  \sqrt{ {  \{- 2 \cos(t)  \}}^{2} +  { \{3 \sin(t)  \}}^{2}  }

 =  > v_{net} =  \sqrt{ 4 { \cos}^{2} (t) + 9 { \sin}^{2}(t)  }

 =  > v_{net} =  \sqrt{ 4  \{1 - { \sin}^{2} (t) \} + 9 { \sin}^{2}(t)  }

 =  > v_{net} =  \sqrt{ 4  +   5 { \sin}^{2} (t)  }

So , final answer is:

 \boxed{ \sf{v_{net} =  \sqrt{ 4  +   5 { \sin}^{2} (t)  } }}

Answered by Arceus02
1

Question:-

The coordinates of a particle's motion on a curve is governed by equations x = - 2 sin(t), y = 3 cos(t). The magnitude of velocity of particle at

time t is ?

Answer:-

Velocity in x axis:-

 {v}_{x} =  \frac{dx}{dt}

 =  > {v}_{x}  =  \frac{d}{dt} ( - 2 \sin(t) )

 =  > {v}_{x}  =  - 2 \times  \frac{d}{dt} ( \sin(t) )

 =  > {v}_{x}  =  - 2cos(t)

Velocity in x axis:-

{v}_{y}  =  \frac{dy}{dt}

 =  > {v}_{y}  =  \frac{d}{dt} (3cos(t))

 =  > {v}_{y}  = 3 \times  \frac{d}{dt} (cos(t))

 =  > {v}_{y}  = -  3 \times    \sin(t)

Net Velocity:-

{v}_{net}  =  \sqrt{ {{v}_{x} }^{2} +  {{v}_{y} }^{2} }

 =  > {v}_{net}  =  \sqrt{ { (- 2cos(t))}^{2}  + {( - 3sin(t))}^{2}}

 =  > {v}_{net}  =  \sqrt{4 {cos}^{2}t + 9 {sin}^{2} t }  =  \sqrt{4 {cos}^{2}t + 4 {sin}^{2} t + 5 {sin}^{2} t }

 =  > {v}_{net}  =  \sqrt{4 + 5 {sin}^{2} t}

\large{\boxed{\sf{{V}_{net}\:=\:\sqrt{4\:+\:5{sin}^{2}t}}}}

Similar questions