Math, asked by vijitharenjusre3990, 10 months ago

The coordinates of the mid-point of the line segment PQ are (1,-2).The coordinates of P are (-3,2).Find the coordinates of Q

Answers

Answered by Anonymous
19

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Coordinates of mid point of line segment PQ are (1 , -2)

 \:\:

  • Coordinates of P are (-3 , 2)

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The coordinates of Q

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

Let the coordinates of Q be  \rm (x_2 , y_2)

 \:\:

 \underline{\bold{\texttt{By mid point formula:}}}

 \:\:

\purple\longrightarrow  \sf (\dfrac { x_1 + x_2 } { 2 } , \dfrac { y_1 + y_2 } { 2 })

 \:\:

Where  \sf x_1 \: \& \: y_1 are coordinates of point P

 \:\:

 \sf \longmapsto (\dfrac { -3 + x_2 } { 2 } , \dfrac { 2 + y_2 } { 2 })

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \bf \implies \dfrac { -3 + x_2 } { 2 } = 1

 \:\:

 \sf \longmapsto x_2 - 3 = 2

 \:\:

 \bf\dashrightarrow x_2 = 5

 \:\:

Also,

 \:\:

 \bf \implies \dfrac { 2 + y_2 } { 2 } = -2

 \:\:

 \sf \longmapsto y_2 + 2 = -4

 \:\:

 \bf \dashrightarrow y_2 = -6

 \:\:

Hence coordinates of point Q are (5 , -6)

\rule{200}5

Similar questions