Math, asked by udhayakumar1908, 6 hours ago

The coordinates of the point A, where AB is the diameter of the circle with center O(1,3) and B(5,4) are: (A) (-3,2) (B) Q(4,-9)(C) Q(2,-3) (D) Q(3,-4)

Answers

Answered by DeeznutzUwU
0

        \text{\huge \bf \underline{Answer:}}

        \text{It is given that }AB\text{ is the diameter of a circle, where }B(5,4)\\O \text{ is the center of the circle with coordinates }(1,3)

        \text{Let }A \text{ be }(x,y)

        \text{We know that twice the radius is the length of diameter}

\implies \: 2OA = AB \text{ ------ (i)}

        \text{Applying distance formula: }\sqrt{(x_1-x_2)^{2} + (y_1 - y_2)^{2}}

\implies \: (x_1,y_1) = A(x,y) \: \: ; \: \: (x_2,y_2) = O(1,3)

\implies \: OA = \sqrt{(x-1)^{2} + (y-3)^{2} }

        \text{We know that }(a-b)^{2} = a^{2} + b^{2} - 2ab

\implies \: OA = \sqrt{(x)^{2} + (1)^{2}  - 2(1)x + (y)^{2} + (3)^{2}  - 2(3)y}

\implies \: OA = \sqrt{x^{2} + 1  - 2x + y^{2} + 9  - 6y}

\implies \: OA = \sqrt{x^{2} + y^{2} - 2x - 6y + 10  }

        \text{Similarly, }AB = \sqrt{(x - 5)^{2} + (y-4)^{2} }

        \text{We know that }(a-b)^{2} = a^{2} + b^{2} - 2ab

\implies \: AB = \sqrt{(x)^{2} + (5)^{2}  - 2(5)x + (y)^{2} + (4)^{2} - 2(4)y }

\implies \: AB = \sqrt{x^{2}  + 25  - 10x + y^{2} + 16 - 8y }

\implies \: AB = \sqrt{x^{2}  + y^{2} - 10x - 8y + 41}

        \text{Substituting in (i)}

\implies \: 2(\sqrt{x^{2} + y^{2} - 2x - 6y + 10}) = \sqrt{x^{2}  + y^{2} - 10x - 8y + 41}

        \text{Squaring both sides}

\implies \: (2)^{2} (x^{2} + y^{2} - 2x - 6y + 10) = x^{2}  + y^{2} - 10x - 8y + 41

\implies \: 4 (x^{2} + y^{2} - 2x - 6y + 10) = x^{2}  + y^{2} - 10x - 8y + 41

\implies \: 4x^{2} + 4y^{2} - 8x - 24y + 40 = x^{2}  + y^{2} - 10x - 8y + 41

\implies \: 4x^{2} + 4y^{2} - 8x - 24y + 40 - x^{2}  - y^{2} + 10x + 8y - 41 = 0

\implies \: 3x^{2} + 3y^{2} +2x - 16y - 1 = 0

        \text{We have obtained an equation of point }A

        \text{Since we have been given options we're going to substitute each}\\\text{one into the equation and check whether it's the solution or not}\\\text{if it is, then the substituted value is the correct option.}

        A) (-3,2)

        \text{Substituting in the equation we get}

\implies \:  3(-3)^{2} + 3(2)^{2} +2(-3) - 16(2) - 1 = 0

\implies \:  3(9) + 3(4) -6 - 32 - 1 = 0

\implies \:  27 + 12 -6 - 32 - 1 = 0

\implies \:  39 -39 = 0

\implies \:  0 = 0

\implies \:  \text{L.H.S = R.H.S}

\implies \: \boxed{\boxed{\text{The coordinates of }A = (-3,2)}}

Similar questions