Math, asked by gopanaboinasaisantos, 8 months ago

The coordinates of the point, dividing the
join of the point (5.0) and (0, 4) in the
ratio 2:3 internally are​

Answers

Answered by amansharma264
2

EXPLANATION.

=> the coordinate of the point dividing the joining

of the point ( 5,0) and ( 0,4)

=> the ratios are = 2:3

 \sf : \implies \:  formula \: of \: section \: formula \: internally \\  \\   \sf : \implies  \:x =  ( \frac{m x_{2} + n x_{1}  }{m +  n})  \:  \:  \: and \:  \:  \: y \:  =  (\frac{m y_{2} + n y_{1}  }{m + n} )

 \sf : \implies  \: let \: the \: ratios \: be \:  = 2 : 3 \\  \\  \sf : \implies  \: x \:  =  \frac{2 \times 0 + 3 \times 5}{2 + 3} \\  \\  \sf : \implies  \: x \:  =  \frac{15}{5}  = 3

 \sf : \implies y \:  =  \dfrac{2 \times 4 + 3 \times 0}{2 + 3} \\  \\   \sf : \implies  \: y \:  =  \frac{8}{5}

 \sf : \implies  \green{{ \underline{coordinates \: are \:  = (3, \dfrac{8}{5} )}}}

Answered by EnchantedGirl
5

\underline{\underline{\bf{\blue{Given:-}}}}

→(5,0)&(0,4)

→Ratio is 2:3

\underline{\underline{\bf{\red{To \: Find:-}}}}

→The coordinates of the point, dividing the join of the point (5.0) and (0, 4) in the ratio 2:3 internally.

\underline{\underline{\bf{\green{Solution:-}}}}

We know,

section formula :- (internally)

 \sf{\orange{x=(mx_{2} + nx_{1} / m+n )}}

And,

\sf{\orange{y= (my_{2} + ny_{1}/m+n)}}

\\

\begin{gathered}\sf \implies \:  \: the \: ratios \: are\: = 2 : 3 \\ \\ \sf  \implies \: x \: = \frac{2 \times 0 + 3 \times 5}{2 + 3} \\ \\ \sf \implies \: x \: = \frac{15}{5} = 3\end{gathered}

\begin{gathered}\sf  \implies y \: = \dfrac{2 \times 4 + 3 \times 0}{2 + 3} \\ \\ \sf \implies \: y \: = \frac{8}{5}\end{gathered}

\sf  \therefore \pink{\underline{ \underline{coordinates \: are \: = (3, \dfrac{8}{5} )}}}</p><p>

____________________

HOPE IT HELPS :)

Similar questions