THE coordinates of the point P dividing the line segment joining the points A(1,3) and B(4,6) IN THE ratio 2:1 are
a.2 ,4
b. 3,5
c. 4,2
d. 5,3
Answers
Answer:
Then , the coordinates of the point P dividing the line segment joining the points a(1,3) and b(4,6) in the ratio 2:1 would be : Hence, the coordinates of the point P is (3,5).
Step-by-step explanation:
The coordinates of the point (x,y) dividing the line segment joining (p,q) and (r,s) in m:n is given by:-
x=\dfrac{mr+np}{m+n}, y=\dfrac{ms+nq}{m+n}x=
m+n
mr+np
,y=
m+n
ms+nq
Then , the coordinates of the point P dividing the line segment joining the points a(1,3) and b(4,6) in the ratio 2:1 would be :
\begin{gathered}x=\dfrac{2\cdot 4+1\cdot 1}{2+1},\ y=\dfrac{2\cdot6+1\cdot3}{2+1}\\\\\Rightarrow\ x=\dfrac{9}{3}=3,\ y=\dfrac{15}{3}=5\end{gathered}
x=
2+1
2⋅4+1⋅1
, y=
2+1
2⋅6+1⋅3
⇒ x=
3
9
=3, y=
3
15
=5
Hence, the coordinates of the point P is (3,5).