The coordinates of the point Q symmetric to the point P(-5,13) with respect to the line 2x-3y-3=0
Answers
Answer:
Step-by-step explanation:
The coordinates of the point symmetric to (-5,13) with respect to the line 2x-3y-3=0 is given by
Answer:
The coordinates of the point symmetric to (-5,13) with respect to the line 2x-3y-3=0 is given by
\boxed{\bf\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{-2(ax_1+by_1+c)}{a^2+b^2}}
a
x−x
1
=
b
y−y
1
=
a
2
+b
2
−2(ax
1
+by
1
+c)
\text{Here, }Here,
(x_1,y_1)=(-5,13)(x
1
,y
1
)=(−5,13)
a=2,\,b=-3,\,c=-3a=2,b=−3,c=−3
\frac{x+5}{2}=\frac{y-13}{-3}=\frac{-2(2(-5)-3(13)-3)}{2^2+(-3)^2}
2
x+5
=
−3
y−13
=
2
2
+(−3)
2
−2(2(−5)−3(13)−3)
\frac{x+5}{2}=\frac{y-13}{-3}=\frac{-2(-10-39-3)}{4+9}
2
x+5
=
−3
y−13
=
4+9
−2(−10−39−3)
\frac{x+5}{2}=\frac{y-13}{-3}=\frac{-2(-52)}{13}
2
x+5
=
−3
y−13
=
13
−2(−52)
\frac{x+5}{2}=\frac{y-13}{-3}=8
2
x+5
=
−3
y−13
=8
\implies\frac{x+5}{2}=8\;\;\&\;\;\frac{y-13}{-3}=8⟹
2
x+5
=8&
−3
y−13
=8
\implies\;x+5=16\;\;\&\;\;y-13=-24⟹x+5=16&y−13=−24
\implies\;x=11\;\;\&\;\;y=-11⟹x=11&y=−11
\therefore\textsf{The point symmetric to (-5,13) is (11,-11)}∴The point symmetric to (-5,13) is (11,-11)