Math, asked by seelamchetanreddy, 8 months ago

The coordinates of the points A and B are (-2, 3) and (4, -5) respectively. If a point P moves so that PA2 - PB2 = 20 , then the equation to the locus of the point P is​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{A(-2,3),\;B(4,-5)\;and\;PA^2-PB^2=20}

\underline{\textbf{To find:}}

\textsf{Locus of the point P}

\underline{\textbf{Solution:}}

\textsf{Let the coordinates of the moving point P be (h,k)}

\textsf{As per given data,}

\mathsf{PA^2-PB^2=20}

\mathsf{(\sqrt{(h+2)^2+(k-3)^2})^2-(\sqrt{(h-4)^2+(k+5)^2})^2=20}

\mathsf{[(h+2)^2+(k-3)^2]-[(h-4)^2+(k+5)^2]=20}

\mathsf{[h^2+4+4h+k^2+9-6k]-[h^2+16-8h+k^2+25+10k]=20}

\mathsf{h^2+4h+k^2+13-6k-h^2+8h-k^2-41-10k=20}

\mathsf{4h+13-6k+8h-41-10k=20}

\mathsf{12h-16k-48=0}

\mathsf{3h-4k-12=0}

\therefore\textsf{The locus of P is}

\textbf{3x-4y-12=0}

Similar questions