Math, asked by sanju1234569, 8 months ago

The coordinates of the vertices of a triangle ABC are A(2, 4), B(5, 1), C(-1, -1). find the equation of the median drawn from vertex A ​

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{Vertices of triangle ABC are}

\textsf{A(2, 4), B(5, 1), C(-1, -1)}

\underline{\textsf{To find:}}

\textsf{The equation of median drawn from vertex A}

\underline{\textsf{Solution:}}

\textsf{Median from A is a line segment joining A and the midpoint}

\textsf{of the side BC}

\textsf{Midpoint of side BC}

\mathsf{(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})}

\mathsf{(\dfrac{5+(-1)}{2},\dfrac{1+(-1)}{2})}

\mathsf{(\dfrac{4}{2},\dfrac{0}{2})}

\mathsf{(2,0)}

\textsf{Now}

\textsf{The equation of median drawn from A}

\textsf{is the equation of the line joining (2,4) and (2,0)}

\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}

\mathsf{\dfrac{y-4}{0-4}=\dfrac{x-2}{2-2}}

\mathsf{\dfrac{y-4}{-4}=\dfrac{x-2}{0}}

\implies\boxed{\mathsf{x-2=0}}

\underline{\textsf{Answer:}}

\textsf{The equation of the median drawn from A is x-2=0}

Similar questions