Math, asked by pramesh0809, 8 hours ago

The coordinates of the vertices ofa triangle are (1,2),(2,3),(3,1).Find the co ordinates of the centre of its circumcircle and the circumradius

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let assume that the triangle is ABC having

  • Coordinates of A (1, 2)

  • Coordinates of B (2, 3)

  • Coordinates of C (3, 1)

Let further assume that P (x, y) be the circumcenter of triangle ABC.

So, P is equidistant from A, B and C respectively.

So, PA = PB = PC

Now, We know

Distance Formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane, then distance between A and B is given by

\rm\implies \:\boxed{\tt{ AB = \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} }}} \\

Consider,

\rm :\longmapsto\:PA=PB

\rm :\longmapsto\:PA^{2} =PB^{2}

\rm :\longmapsto\: {(x - 1)}^{2} +  {(y - 2)}^{2} =  {(x - 2)}^{2} +  {(y - 3)}^{2}

\rm :\longmapsto\: {x}^{2} + 1 - 2x +  {y}^{2} + 4 - 4y  =   {x}^{2} + 4 -4x+ {y}^{2} + 9 - 6y

\rm :\longmapsto\:1 - 2x - 4y = 9 - 4x - 6y

\rm :\longmapsto \: - 2x - 4y +  4x  +  6y = 9 - 1

\rm :\longmapsto \: 2x + 2y = 8

\rm :\longmapsto \: 2(x + y) = 8

\bf\implies \:x + y = 4 -  -  -  - (1)

Now, Consider

\rm :\longmapsto\:PB=PC

\rm :\longmapsto\:PB^{2} =PC^{2}

\rm :\longmapsto\: {(x - 2)}^{2} +  {(y - 3)}^{2} =  {(x - 3)}^{2} +  {(y - 1)}^{2}

\rm :\longmapsto\: {x}^{2} +4 - 4x +  {y}^{2} + 9 - 6y  =   {x}^{2} +9 -6x+ {y}^{2} + 1 - 2y

\rm :\longmapsto\:4 - 4x - 6y = 1 - 6x - 2y

\rm :\longmapsto\: - 4x - 6y + 6x + 2y = 1 - 4

\rm :\longmapsto\: 2x - 4y = - 3

\rm :\longmapsto\: 2(4 - y) - 4y = - 3 \:  \:  \:  \{using \: (1) \}

\rm :\longmapsto\: 8 - 2y - 4y = - 3

\rm :\longmapsto\:  - 6y = - 3  - 8

\rm :\longmapsto\:  - 6y = - 11

\bf\implies \:y = \dfrac{11}{6}

On substituting the value of y in equation (1), we get

\rm :\longmapsto\:x + \dfrac{11}{6} = 4

\rm :\longmapsto\:x = 4 - \dfrac{11}{6}

\rm :\longmapsto\:x = \dfrac{24 - 11}{6}

\bf\implies \:x = \dfrac{13}{6}

So,

\bf\implies \:Coordinates \: of \: P = \bigg(\dfrac{13}{6}, \: \dfrac{11}{6}  \bigg)

Now, Circumradius is given by

\rm :\longmapsto\:PA

\rm \:  =  \:  \sqrt{ {\bigg[\dfrac{13}{6}  - 1\bigg]}^{2}  +  {\bigg[\dfrac{11}{6}  - 2\bigg]}^{2} }

\rm \:  =  \:  \sqrt{ {\bigg[\dfrac{13 - 6}{6}  \bigg]}^{2}  +  {\bigg[\dfrac{11 - 12}{6} \bigg]}^{2} }

\rm \:  =  \:  \sqrt{ {\bigg[\dfrac{7}{6}  \bigg]}^{2}  +  {\bigg[\dfrac{ - 1}{6} \bigg]}^{2} }

\rm \:  =  \:  \sqrt{ \dfrac{49}{36}  + \dfrac{1}{36}  }

\rm \:  =  \:  \sqrt{ \dfrac{49 + 1}{36}}

\rm \:  =  \:  \sqrt{ \dfrac{50}{36}}

\rm \:  =  \:  \sqrt{ \dfrac{5 \times 5 \times 2}{6 \times 6}}

\rm \:  =  \: \dfrac{5}{6} \sqrt{2}  \: units

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Section formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and C(x, y) be the point on the line segment which divides AB internally in the ratio m₁ : m₂, then the coordinates of C will be given by

\sf\implies\boxed{\tt{  (x,y) = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)}} \\

2. Mid-point formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and let C(x, y) be the mid-point of AB, then the coordinates of C will be given by

\sf\implies\boxed{\tt{  (x,y) = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)}} \\

3. Centroid of a triangle

Centroid of a triangle is defined as the point where the medians of the triangle meet and is represented by the symbol G.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let G(x, y) be the centroid of the triangle, then the coordinates of G will be

\sf\implies \: \boxed{\tt{  (x, y) = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)}} \\

Similar questions