the coordinates of two points p and q are (2,3) and (5,2) respectively.If R is any point such that PR=QR and area of ∆PQR =7 sq. units, then find the coordinates of R.
Answers
co-ordinates of R = (49/10, 67/10) or (21/10, -17/10)
given, two co-ordinates of triangle ∆PQR are P(2, 3) and Q(5, 2) respectively.
R is any point such that, PR = QR
let R (x, y)
now PR = √{(x - 2)² + (y - 3)²}
QR = √{(x - 5)² + (y - 2)²}
now PR = QR
⇒ √{(x - 2)² + (y - 3)²} = √{(x - 5)² + (y - 2)²}
⇒(x - 2)² + (y - 3)² = (x - 5)² + (y - 2)²
⇒(x - 2)² - (x - 5)² = (y - 2)² - (y - 3)²
⇒(x - 2 - x + 5)(x - 2 + x - 5) = (y - 2 - y + 3)(y - 2 + y - 3)
⇒3(2x - 7) = 1(2y - 5)
⇒6x - 21 = 2y - 5
⇒6x - 2y = 16
⇒3x - y = 8..........(1)
also area of ∆PQR = 7 sq unit
⇒1/2 |2(2 - y) + 5(y - 3) + x(3 - 2)| = 7
⇒|4 - 2y + 5y - 15 + x| = 14
⇒|x + 3y - 11| = 14
⇒x + 3y - 11 = ±14
⇒x + 3y = 25.....(2) or x + 3y = -3 ......(2)
case 1 : from equation (1) and (2) we get,
x = 49/10 , y = 67/10
case 2 : from equation (1) and (2) we get,
x = 21/10 , y = -17/10
hope it is helpful to you