Math, asked by swshahid62, 2 months ago

The coordinates of which divides the line segment joining the points (3,-4) and (-2,5) in the ratio 1:3 is '

'(-7/4,-7/4)'

'(7/4,-7/4)'

'(-7/4,7/4)'

'(7/4,7/4)'​

Answers

Answered by xSoyaibImtiazAhmedx
102

Let , the coordinate point which divides the line segment joining the points A(3,-4) and B(-2,5) in the ratio 1:3 → be P ( x,y) .

Here,

  • m : n 1 : 3

 \bold{ \:  \:  \:  \:  \:  \: x_1 = 3 \:  \:  \:  \:  \:  \:  \:  \:  , \:  \:  \:  \:  \:  \:  y_1 = -4 }

 \bold{  \:  \:  \:  \:  \:  \: x_2 = -2 \:  \:  \:  \:  \:  \:  \:  ,  \:  \:  \:  \:  \:  \: y_2 = 5 }

Now,

 \color{blue} \bold{→ (x,y)= (\frac{m×x_2+ n×x_1}{m+n} , \frac{m×y_2+n×y_1}{m+n}</p><p>)}

 \bold{→{(x,y) = ( \frac{1×( - 2)+ 3×3}{1  + 3} , \frac{1×5+3×( - 4)}{1 + 3}</p><p>})}

 \bold{→{(x,y) = ( \frac{ - 2+ 9}{4} , \frac{5 - 12}{4}</p><p>})}

 \boxed{  \color{red}\bold{→{(x,y) = ( \frac{ 7}{4} , \frac{ - 7}{4}</p><p>})}}

So , the coordinate point P →

 \boxed {\underbrace{ \large \color{orange}{ \bold{( \frac{7}{4} \:  \:  \:  ,</p><p>  \frac{ - 7}{4} )}}}}

Similar questions