the coordipales of the point which divides the line Segment
joining the points (4, -3) and (8.5) in the ratio 3:1
are a (3,7) (2,3) c (7,3) d (-3,-7)
Answers
Answered by
1
Answer:
The coordinates of the point dividing line segment are ( 7, 3 ).
Option c. ( 7, 3 )
Step-by-step-explanation:
Let the given points of a line segment be A and B.
- A ≡ ( 4, - 3 ) ≡ ( x₁, y₁ )
- B ≡ ( 8, 5 ) ≡ ( x₂, y₂ )
Let the point dividing the line segment in ratio 3 : 1 be P.
- P ≡ ( x, y )
- m : n = 3 : 1
Now, by section formula,
x = ( mx₂ + nx₁ ) / ( m + n ) & y = ( my₂ + ny₁ ) / ( m + n )
∴ x = ( 3 * 8 + 1 * 4 ) / ( 3 + 1 )
⇒ x = ( 24 + 4 ) / 4
⇒ x = 28 / 4
⇒ x = 7
And,
y = ( my₂ + ny₁ ) / ( m + n )
⇒ y = [ 3 * 5 + 1 * ( - 3 ) ] / ( 3 + 1 )
⇒ y = ( 15 - 3 ) / 4
⇒ y = 12 / 4
⇒ y = 3
∴ P ( x, y ) = ( 7, 3 )
∴ The coordinates of the point dividing line segment are ( 7, 3 ).
Similar questions