Math, asked by Manideep1105, 9 months ago

The correct answer will be marked as the brainliest, and the silly answers will be reported and removed. ..........XD

Attachments:

Answers

Answered by shadowsabers03
14

Let,

  • the strawberry = \displaystyle\sf {a}

  • the orange = \displaystyle\sf {b\neq a}

  • the pear = \displaystyle\sf {c}

  • the grapes = \displaystyle\sf {d}

  • the lemon = \displaystyle\sf {e}

  • the brinjal = \displaystyle\sf {f}

  • the watermelon = \displaystyle\sf {g}

  • the cherry = \displaystyle\sf {h}

From second equation,

\displaystyle\longrightarrow\sf{5a=b}

Then first equation becomes,

\displaystyle\longrightarrow\sf{ab=b}

\displaystyle\longrightarrow\sf{5a^2-5a=0}

\displaystyle\longrightarrow\sf{5a(a-1)=0}

\displaystyle\longrightarrow\sf{a=0\quad;\quad a=1}

If \displaystyle\sf {a=0,}

\displaystyle\longrightarrow\sf{b=0}

But given that \displaystyle\sf {a\neq b.} Hence,

\displaystyle\longrightarrow\sf{a=1}

And so,

\displaystyle\longrightarrow\sf{b=5}

But how the fourth equation is possible?

\displaystyle\longrightarrow\sf{\dfrac {1}{d}=1-1}

\displaystyle\longrightarrow\sf{\dfrac {1}{d}=0}

\displaystyle\longrightarrow\sf{d=\infty}

From the third equation,

\displaystyle\longrightarrow\sf{c=(1+1)\times 5^{1+1+1}-5-5-1}

\displaystyle\longrightarrow\sf{c=2\times5^3-11}

\displaystyle\longrightarrow\sf{c=239}

Consider the fifth one.

\displaystyle\longrightarrow\sf{e=\lim_{n\to\infty}\left (1+\dfrac {1}{n}\right)^n}

Let,

\displaystyle\longrightarrow\sf{y=\left(1+\dfrac{1}{n}\right)^n}

\displaystyle\longrightarrow\sf{\ln y=n\cdot\ln\left(1+\dfrac{1}{n}\right)}

\displaystyle\longrightarrow\sf{\ln y=\dfrac{\ln\left(1+\dfrac{1}{n}\right)}{\left(\dfrac{1}{n}\right)}}

\displaystyle\longrightarrow\sf{\lim_{n\to\infty}\ln y=\lim_{n\to\infty}\dfrac{\ln\left(1+\dfrac{1}{n}\right)}{\left(\dfrac{1}{n}\right)}}

As \displaystyle\sf{n\to\infty,\ \dfrac{1}{n}\to0.} then,

\displaystyle\longrightarrow\sf{\lim_{n\to\infty}\ln y=\lim_{\frac{1}{n}\to0}\dfrac{\ln\left(1+\dfrac{1}{n}\right)}{\left(\dfrac{1}{n}\right)}}

But we know that \displaystyle\longrightarrow\sf{\lim_{x\to0}\dfrac{\ln(1+x)}{x}=1.} Then,

\displaystyle\longrightarrow\sf{\lim_{n\to\infty}\ln y=1}

\displaystyle\longrightarrow\sf{\lim_{n\to\infty}y=e}

Thus,

\displaystyle\longrightarrow\sf{\lim_{n\to\infty}\left(1+\dfrac{1}{n}\right)^n=e}

And hence, the lemon,

\displaystyle\longrightarrow\sf{e=e}

Consider the sixth equation.

\displaystyle\longrightarrow\sf{f=(5-1)\times((5-1)\cot^{-1}(5)-\cot^{-1}(239))}

\displaystyle\longrightarrow\sf{f=4\left(4\tan^{-1}\left(\dfrac{1}{5}\right)-\tan^{-1}\left(\dfrac{1}{239}\right)\right)}

But,

\displaystyle\longrightarrow\sf{\tan(4x)=\dfrac{4\tan x-4\tan^3x}{1-6\tan^2x+\tan^4x}}

implies,

\displaystyle\longrightarrow\sf{4\tan^{-1}(a)=\tan^{-1}\left(\dfrac{4a-4a^3}{1-6a^2+a^4}\right)}

only if \displaystyle\sf{a=\tan x\quad\iff\quad x=\tan^{-1}(a).}

Then,

\displaystyle\longrightarrow\sf{f=4\left(\tan^{-1}\left(\dfrac{\dfrac{4}{5}-\dfrac{4}{125}}{1-\dfrac{6}{25}+\dfrac{1}{625}}\right)-\tan^{-1}\left(\dfrac{1}{239}\right)\right)}

\displaystyle\longrightarrow\sf{f=4\left(\tan^{-1}\left(\dfrac{120}{119}\right)-\tan^{-1}\left(\dfrac{1}{239}\right)\right)}

Since \displaystyle\sf{\tan^{-1}(a)-\tan^{-1}(b)=\tan^{-1}\left(\dfrac{a-b}{1+ab}\right),}

\displaystyle\longrightarrow\sf{f=4\tan^{-1}\left(\dfrac{\dfrac{120}{119}-\dfrac{1}{239}}{1+\dfrac{120}{119\times239}}\right)}

\displaystyle\longrightarrow\sf{f=4\tan^{-1}\left(\dfrac{120\times239-119}{119\times239+120}\right)}

\displaystyle\longrightarrow\sf{f=4\tan^{-1}\left(1\right)}

\displaystyle\longrightarrow\sf{f=4\cdot\dfrac{\pi}{4}}

\displaystyle\longrightarrow\sf{f=\pi}

Consider the seventh equation,

\displaystyle\longrightarrow\sf{\dfrac {g}{h}=e+f}

\displaystyle\longrightarrow\sf{\dfrac {g}{h}=e+\pi}

But it's given that \displaystyle\sf{g,\ h\in\mathbb{Z}.} So the LHS \displaystyle\sf{\dfrac{g}{h}} is rational but the RHS \displaystyle\sf{e+\pi} is irrational.

Hence there are no possible integer values for the watermelon and the cherry.

Answered by RvChaudharY50
122

|| ✰✰ ANSWER ✰✰ ||

First :- Strawberry * Orange = Orange

Second :- 5 (Strawbery) = Orange

Conclude :-

Strawberry = 1

Orange = 5

_______________

Now,

Third :- (1 + 1) * 5^(1+1+1) - 5 - 5 - 1 = Pear

→ Pear = 2 * 5³ - 11 = 250 - 11 = 239.

_______________

So, Now,

Fourth :- (1/grapes) = 1 - 1 = 0

→ (1/grapes) = 0

→ grapes = (1/0)

→ Grapes =

_______________

Fifth :- lim(n→∞) [ 1 + 1/n]^n = Mango

Mango = e

_______________

Sixth :- (Putting all values)

(5-1)*[ (5-1) * cot^(-1)5 - cot^(-1)239 ] = Eggplant

4[4cot^(-1)5 - cot^(-1)239 ] = Eggplant

Now For value of [ 4cot^(-1)5 - cot^(-1)239 ] Refer To My Image ..

we get :-

4 * (π/4) = Eggplant

→ Eggplant = π.

_______________

Seventh :-

(watermelon /Lichi ) = e + π

But given , watermelon & Lichi Z.

But value of (e + π) cant be Rational Number .

Therfore, We conclude That, Both our Values are un-defined.

Attachments:
Similar questions