Math, asked by samrathlalsagitra, 6 months ago

the corresponding.
5. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc (ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord

Answers

Answered by Anonymous
16

Given,

Radius = 21 cm

θ = 60°

(i) Length of an arc = θ/360°×Circumference(2πr)

∴ Length of an arc AB = (60°/360°)×2×(22/7)×21

= (1/6)×2×(22/7)×21

Or Arc AB Length = 22cm

(ii) It is given that the angle subtend by the arc = 60°

So, area of the sector making an angle of 60° = (60°/360°)×π r2 cm2

= 441/6×22/7 cm2

Or, the area of the sector formed by the arc APB is 231 cm2

(iii) Area of segment APB = Area of sector OAPB – Area of ΔOAB

Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is 60°, ΔOAB is an equilateral triangle. So, its area will be √3/4×a2 sq. Units.

Area of segment APB = 231-(√3/4)×(OA)2

= 231-(√3/4)×212

Or, Area of segment APB = [231-(441×√3)/4] cm2

Similar questions