the corresponding.
5. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc (ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord
Answers
Answered by
16
Given,
Radius = 21 cm
θ = 60°
(i) Length of an arc = θ/360°×Circumference(2πr)
∴ Length of an arc AB = (60°/360°)×2×(22/7)×21
= (1/6)×2×(22/7)×21
Or Arc AB Length = 22cm
(ii) It is given that the angle subtend by the arc = 60°
So, area of the sector making an angle of 60° = (60°/360°)×π r2 cm2
= 441/6×22/7 cm2
Or, the area of the sector formed by the arc APB is 231 cm2
(iii) Area of segment APB = Area of sector OAPB – Area of ΔOAB
Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is 60°, ΔOAB is an equilateral triangle. So, its area will be √3/4×a2 sq. Units.
Area of segment APB = 231-(√3/4)×(OA)2
= 231-(√3/4)×212
Or, Area of segment APB = [231-(441×√3)/4] cm2
Similar questions