Math, asked by vedanshverma74, 2 months ago

The cost of fencing a circular
field at the rate of ₹24 per meter is ₹5280.Find the radius of field

Answers

Answered by BrainlyPearl
7

\mathbb{SOLUTION:-}

★ Given,

  • Rate of fencing = ₹24/m.
  • Cost of fencing the circular field = ₹5280
  • Find the radius

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

We know that, it costs ₹5280 to fence the whole field.

So, we can find out the circumference of the circle by dividing the total cost of fencing by the rate of fencing per m.

\begin{gathered}\\\;\sf{:\rightarrow\;\;circumference\;=\;\bf{\dfrac{5280}{24}\:}}\end{gathered}

 \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;circumference=\;\bf{{ \sf{\cancel\dfrac{5280}{24}}}\:}} = 220\end{gathered}

 \:  \:  \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;\;circumference\;=\;\bf{{220 {m} }\:}}\end{gathered}

Now we get the circumference i.e., 220m.

Now we are asked to find the radius of the field.

Formula using here,

 \:  \:  \:  \:  \:  \:  \:  \: {\sf { \blue{ \boxed{ \sf {2\pi \:r \:  =  \: circumference}}}}}

★ Where,

  • We are taking π as 22/7
  • Circumference = 220m
  • let's assume x as radius.

Putting down the values,

\begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{2 \times \dfrac{22}{7} \times x = 220\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{\dfrac{44}{7} \times x = 220\:}}\end{gathered}

Here I'm transposing LHS to RHS (while transposing the terms sign changes inversely).

\begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{ x =  \frac{ 220 \times 7}{44} \:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;\;\bf{ x =  \frac{1540}{44} \:}}\end{gathered}

 \:  \:  \:  \: \begin{gathered}\\\;\sf{:\rightarrow\;x=\;\bf{{ \sf{\cancel\dfrac{1540}{44}}}\:}} = 35\end{gathered}

Thus, the radius of circular field is 35m.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Formulas related to circle:-

  • Circumference of circle = 2πr

  • Area of circle = πr²

  • Circumference of semi-circle = πr

  • Area of semi-circle = 1/2 (πr²).
Similar questions