Math, asked by ruchik4504832, 5 months ago

The cost of fencing a circular field at the rate of Rs.24 per metre is Rs. 5280.

Find the radius of the field.​

Attachments:

Answers

Answered by IIMidnightHunterII
15

\LARGE\textbf{\underline{\underline{Given :-}}}

  • Cost of fencing a circular field per meter = Rs. 24 .
  • Total cost of fencing the circular field = Rs. 5280 .

\LARGE\textbf{\underline{\underline{To find :-}}}

  • The radius of the circular field .

\LARGE\textbf{\underline{\underline{Method  :-}}}

  • As we know the fencing is put edge of of any area or field . And that edge is the perimeter of that of that area or field .

  • So , in this question the perimeter of the circular field is the circumference of the circular field .

  • And we have the total cost and the per meter cost of the fencing . So , by dividing the total cost by the per meter cost we can get the total length of the fencing or the circumference of the circular field.

\LARGE\textbf{\underline{\underline{Formula  :-}}}

\large\boxed{\textbf\textcolor{orange}{➛\: \: \: \: Circumference of the circle = $2  \pi  r$}}

\LARGE\textbf{\underline{\underline{Solution :-}}}

* Total cost of the fencing ÷ Cost of the per meter fencing = Total length covered by the fencing .

\large\textsf{➙\: \: \: \: \: \: Total length of the fencing = $\cancel \cfrac{5280}{24}$}

\large\textsf{➙\: \: \: \: \: \: Total length of the fencing = 220 m }

So , the length covered by the fencing or the circumference of the circular field = 220 m

  • By using the formula of the circumference of the circle :-

Here : -

  • Circumference = 220 m .
  • π = 22/7

\large\Longrightarrow\textsf{\: \: \: \: 220 = $ 2 × \cfrac{22}{7} × r$}

\large\Longrightarrow\textsf{$\: \: \: \: \cfrac{220 × 7 }{22 × 2 } $= r}

\large\Longrightarrow\textsf{$\: \: \: \: \cancel\cfrac{1540}{44} = r$ }

\large\Longrightarrow\textsf{\: \: \: \: 35 = r }

\large\boxed{\therefore\textbf\textcolor{red}{The radius of the circular field = 35 m }}

\LARGE\textbf{\underline{\underline{Formulas:-}}}

  • Of a circle :-

\large\textbf\textcolor{purple}{↦\: \: \: \: Area = π r²}

\large\textbf\textcolor{purple}{↦\: \: \: \: Radius ( r ) = $ \cfrac{1}{2} × D$}

\large\textbf\textcolor{purple}{↦\: \: \: \: Diameter ( D ) = 2r}

Answered by anshu24497
26

\huge\mathfrak{ \blue{\underline{\underline{Solution :}}}}

Total cost of the fencing ÷ Cost of the per meter fencing = Total length covered by the fencing .

\textsf{➙ \: Total length of the fencing = $\cancel \cfrac{5280}{24}$} \\\textsf{➙ \: Total length of the fencing = 220 m }

So , the length covered by the fencing or the circumference of the circular field =220 m

Using the formula of the circumference of the circle :

➩ Here : -

  • Circumference = 220 m .
  • π = 22/7

\large\Longrightarrow\text{\: \: \: \: 220 = $ 2 × \cfrac{22}{7} × r$} \\ \\  \large\Longrightarrow\textsf{$\: \: \: \: \cfrac{220 × 7 }{22 × 2 } $= r}  \\ \\  \large\Longrightarrow\textsf{$\: \: \: \: \cancel\cfrac{1540}{44} = r$ } \\  \\  \large\Longrightarrow\text{ \purple{\: \: \: \: 35 = r }}

\large {\text{ \red{\boxed{\therefore{The  \: radius  \: of  \: the  \: circular  \: field = 35 m }}}}}

Similar questions