Math, asked by garvitakanwar5748, 3 months ago

the cost of fencing a rectangular field at rupees 40 per metre is rupees 3200 .if the length of the field is 24 metre then it's breadth is ​

Answers

Answered by PanchalKanchan
4

Question :

the cost of fencing a rectangular field at rupees 40 per metre is rupees 3200 .if the length of the field is 24 metre then it's breadth is ?

Answer :

\sf\pink{Given:}

  • cost of fencing at the rate of Rs 40 per metre is Rs 3200 .

  • length of the rectangular field is 24 m.

\sf\pink{To\:find:}

  • Breadth of the rectangular field ?

Explanation :

cost of fencing = Rate × Perimeter

\\ \longrightarrow\sf{ 3200 = 40 × Perimeter}

\\ \longrightarrow\sf{  Perimeter = \dfrac{3200}{40}}

\\ \longrightarrow\sf{  Perimeter = \dfrac{320}{4}}

\\ \longrightarrow\sf{  Perimeter = 80}

Therefore the perimeter is 80 m.

Perimeter = 2 ( l + b )

\\ \longrightarrow\sf{80 = 2 ( 24 + b )}

\\ \longrightarrow\sf{80 = 48 + 2b }

\\ \longrightarrow\sf{80 - 48 =  2b }

\\ \longrightarrow\sf{32 =  2b }

\\ \longrightarrow\sf{b = \dfrac{32}{2}}

\\ \longrightarrow\sf{b = 16}

Therefore the breadth of the rectangular field is 16 m .

Answered by Anonymous
2

Step-by-step explanation:

Given:

cost of fencing at the rate of Rs 40 per metre is Rs 3200 .

length of the rectangular field is 24 m.

\sf\pink{To\:find:}Tofind:

Breadth of the rectangular field ?

Explanation :

cost of fencing = Rate × Perimeter

\begin{gathered}\\ \longrightarrow\sf{ 3200 = 40 × Perimeter}\end{gathered}

⟶3200=40×Perimeter

\begin{gathered}\\ \longrightarrow\sf{ Perimeter = \dfrac{3200}{40}}\end{gathered}

⟶Perimeter=

40

3200

\begin{gathered}\\ \longrightarrow\sf{ Perimeter = \dfrac{320}{4}}\end{gathered}

⟶Perimeter=

4

320

\begin{gathered}\\ \longrightarrow\sf{ Perimeter = 80}\end{gathered}

⟶Perimeter=80

Therefore the perimeter is 80 m.

Perimeter = 2 ( l + b )

\begin{gathered}\\ \longrightarrow\sf{80 = 2 ( 24 + b )}\end{gathered}

⟶80=2(24+b)

\begin{gathered}\\ \longrightarrow\sf{80 = 48 + 2b }\end{gathered}

⟶80=48+2b

\begin{gathered}\\ \longrightarrow\sf{80 - 48 = 2b }\end{gathered}

⟶80−48=2b

\begin{gathered}\\ \longrightarrow\sf{32 = 2b }\end{gathered}

⟶32=2b

\begin{gathered}\\ \longrightarrow\sf{b = \dfrac{32}{2}}\end{gathered}

⟶b=

2

32

\begin{gathered}\\ \longrightarrow\sf{b = 16}\end{gathered}

⟶b=16

Therefore the breadth of the rectangular field is 16 m .

Similar questions