Math, asked by routniharika82, 6 months ago

The cost of levelling a rectangular garden at rupees 3.50 per sq m. is rs 8400 . Its length and breadth are in the ratio 3:2. Find the perimeter of the garden?​

Answers

Answered by Anonymous
11

Given :

  • Cost of levelling the rectangular garden = Rs 8400

  • Cost of garden per m² = Rs. 3.50

  • Ratio of length is to breadth = 3 : 2

To find :

The Perimeter of the garden.

Solution :

According to the given information , the total cost and the cost per m² , but we know that :

Total cost of levelling the garden = Area of the garden × cost of levelling per m²

Let the area of the garden be x m².

Now , using the above concept and substituting the values in it, we get :

:\implies \bf{8400 = x \times 3.50} \\ \\

:\implies \bf{\dfrac{8400}{3.50} = x} \\ \\

:\implies \bf{\dfrac{840000}{350} = x} \\ \\

:\implies \bf{2400 = x} \\ \\

\boxed{\therefore \bf{Area\:(A) = 2400\:m^{2}}} \\ \\

Hence, the area of the field is 2400 m².

To find the sides of the Rectangle :

Let the length be 3x and the breadth be 2x.

Now, using the formula for area of a Rectangle and substituting the values in it, we get :

:\implies \bf{Area = Length \times Breadth} \\ \\ \\

:\implies \bf{2400 = 3x \times 2x} \\ \\ \\

:\implies \bf{2400 = 6x^{2}} \\ \\ \\

:\implies \bf{\dfrac{2400}{6} = x^{2}} \\ \\ \\

:\implies \bf{400 = x^{2}} \\ \\ \\

:\implies \bf{\sqrt{400} = x} \\ \\ \\

:\implies \bf{20 = x} \\ \\ \\

\boxed{\therefore \bf{x = 20\:m}} \\ \\

Hence, the value of x is 20 m.

Now , putting the value of x in the length and breadth of the Rectangle , we get :

  • :\implies \bf{Length = 3x} \\ \\

:\implies \bf{L = 3 \times 20} \\ \\

:\implies \bf{L = 60} \\ \\

\boxed{\therefore \bf{L = 60}} \\ \\

Hence, the length of the Rectangle is 60 m.

:\implies \bf{Breadth = 2x} \\ \\

:\implies \bf{B = 2 \times 20} \\ \\

:\implies \bf{B = 40} \\ \\

\boxed{\therefore \bf{B = 40}} \\ \\

Hence, the breadth of the Rectangle is 40 m.

Perimeter of the Rectangle :

Using the formula for and substituting the values in it, we get :

:\implies \bf{Perimeter = 2(length + breadth)} \\ \\ \\

:\implies \bf{P = 2(60 + 40)} \\ \\ \\

:\implies \bf{P = 2 \times 100} \\ \\ \\

:\implies \bf{P = 200} \\ \\ \\

\boxed{\therefore \bf{Perimeter = 200}} \\ \\ \\

Hence, the perimeter of the Rectangle is 200m.

Answered by Anonymous
133

Given:

★ Length and Breadth are in the Ratio 3:2

★ Cost of levelling a Rectangular garden at rs. 3.50/m² is rs. 8400

Find:

★ The Perimeter of Garden

Solution:

Let,

 \sf \star  \red{Length \: of \: rectangle = 3x}

 \sf \star  \blue{Breadth \: of \: rectangle = 2x}

\to \sf  \pink{Area \: of \: rectangle = l \times b}

\to \sf  \pink{Area \: of \: rectangle = 3x \times 2x}

\to \sf  \pink{Area \: of \: rectangle = 6 {x}^{2} }

____________________

\footnotesize{\hookrightarrow   \purple{\sf Cost  \: of \: levelling = area \: of \: rectangle \times 3.50}}

 \footnotesize{\hookrightarrow \purple{\sf 8400= 6 {x}^{2}  \times 3.50}}

 \footnotesize{\hookrightarrow \purple{\sf 8400= 6 \times  {x}^{2}  \times 3.50}}

 \footnotesize{\hookrightarrow \purple{\sf 8400= 6 \times 3.50 \times  {x}^{2} }}

 \footnotesize{\hookrightarrow \purple{\sf 8400= 21\times  {x}^{2} }}

 \footnotesize{\hookrightarrow \purple{\sf   \cancel{\dfrac{8400}{21}} = {x}^{2} }}

 \footnotesize{\hookrightarrow \purple{\sf {x}^{2} = 400}}

 \footnotesize{\hookrightarrow \purple{\sf x=  \sqrt{400} }}

 \footnotesize{\hookrightarrow \purple{\sf x=  20m}}

____________________

 \sf \therefore length = 3x = 3 \times 20 = 60m

 \sf and \:  breadth = 2x = 2\times 20 = 40m

 \sf \to \orange{ Perimeter = 2(l + b)}

 \sf \to \orange{ Perimeter = 2(60 + 40)}

 \sf \to \orange{ Perimeter = 2(100)}

 \sf \to \orange{ Perimeter = 200m}

 \small{\underline{ \sf\therefore perimeter \: of \: rectangle  \: is \: 200m}}

Similar questions