Math, asked by hanumantcdhengale201, 11 months ago

The cost of one chair and 1 table is 2000.the cost of 5chair and some tables is 16,200rs .if the no of chair and table interchanged and 5% discount us allowed .U have to pay 11210rs.find the no of table initially .Iproposed to purchase.find the total cost of 7chairs and 6tables

Answers

Answered by slicergiza
12

Consider x represents cost of one chair, y represents cost of one table ( costs are in rupees ).

Then, the cost of one chair and 1 table  = x + y

According to the question,

x + y = 2000                                  ...... (1)

Assume cost of 5 chairs and z (say) tables is 16200,

That is, 5x + zy = 16200              ...... (2)

After interchanging number of chairs and table, new cost = zx + 5y

Again, according to the question,

(100-5)\%\text{ of }(zx+5y)=11210

         95% of (zx + 5y) = 11210

                 0.95(zx+5y)=11210

                           zx+5y=11800            ...... (3)

Equation (2) - 5 × equation (1)

(z-5)y=16200-10000

(z-5)y=6200

 ⇒ y=\frac{6200}{z-5}

Substitute this value in equation (1),

x+\frac{6200}{z-5}=2000

          x=2000-\frac{6200}{z-5}

             =\frac{2000z-10000-6200}{z-5}

             =\frac{2000z-16200}{z-5}

Substitute the values of x and y in equation (3),

z(\frac{2000z-16200}{z-5})+5(\frac{6200}{z-5})=11800

         \frac{2000z^2-16200z+31000}{z-5}=11800

2000z^2-16200z+31000=11800z-59000

2000z^2-28000z+90000=0

                 z^2-14z+45=0

           z^2-9z-5z+45=0

         z(z-9)-5(z-9)=0

                 (z-5)(z-9)=0

                                     z=5\text{ or }9

If the value of z is 5, then x and y are not finite.

Thus, z =9.

That is, initially, the number of tables is 9.

Also,

x=\frac{2000(9)-16200}{9-5}

  =\frac{18000-16200}{4}

  =\frac{1800}{4}

  =450

y=\frac{6200}{9-5}

  =\frac{6200}{4}

  =1550

And,

7x+6y=7(450)+6(1550)

            =3150+9300

            =12,450

Therefore, the total cost of 7 chairs and 6 tables is rs 12,450.

Similar questions