Math, asked by megaved2007, 3 months ago

The cost of papering the walls of a room 12 m long and 8 m broad at 80 paise
per sq. m. is Rs. 160. Find its height.

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{length \: of \: room \:  = 12 \: m}  \\ &\sf{breadth \: of \: room \:  = 8 \: m} \\ &\sf{total \: cost \:of \: papering \: 4 \: walls  = \: rs \: 160 }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{height \: of \: the \: room}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  Let :-  \begin{cases} &\sf{height \: of \: room \:  =  \: h \:  \: meter}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

☆ Given, cost of papering the wall is Rs 160 at 80 paisa per sq. m.

\tt \:  \longrightarrow \: Area \: of \: wall \: to \: be \: papered \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   = \tt \:  \dfrac{cost \: of \: papering \: the \: wall}{cost \: of \: papering \: per \: meter}  \\ \tt \:   \:  \:  \:  \:  \:  = \dfrac{160}{0.80}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 200 \:  {m}^{2}

\tt \:  \longrightarrow \: Length \:  of \:  room \:  =  \: 12  \: m

\tt \:  \longrightarrow \: Breadth \: of \: room \:  =  \: 8 \: m

\bf \:  Area \: of \: four \: walls \:  = 2(l \:  +  \: b )\:  \times h

\tt \:  \longrightarrow \: 200 = 2 \times (12 + 8) \times h

\tt \:  \longrightarrow \: 200 = 40h

\tt \:  \longrightarrow \: h \:  =  \: \dfrac{200}{40}

\tt \:  \longrightarrow \: h \:  = 5 \: m

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Explore \:  more } ✍

More info:

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions