Math, asked by muditgupta119, 2 months ago

the cost of the property appreciate for 3 years at the rate of 5% 10% and 15% respectively find the cost after 3 years if the present cost is 80,000​

Answers

Answered by BrainlyTwinklingstar
4

Given :

Present cost of property : ₹80000

Appreciation of first year : 5%

Appreciation of second year : 10%

Appreciation of third year : 15%

To find :

The cost of the property after three years

Solution :

First, we should find the cost of the first and second years and then third year separately.

Value of the property at first year :

\sf \dashrightarrow 5\% \: of \: 80000

\sf \dashrightarrow \dfrac{5}{100} \times 80000

\sf \dashrightarrow \dfrac{1}{20} \times 80000

\sf \dashrightarrow \dfrac{1 \times 80000}{20} = \dfrac{80000}{20}

\sf \dashrightarrow \cancel \dfrac{80000}{20} = 4000

\sf \dashrightarrow 80000 + 4000

\sf \dashrightarrow Rs.84000

Value of the property at second year :

\sf \dashrightarrow 10\% \: of \: 84000

\sf \dashrightarrow \dfrac{10}{100} \times 84000

\sf \dashrightarrow \dfrac{1}{10} \times 84000

\sf \dashrightarrow \dfrac{1 \times 84000}{10} = \dfrac{84000}{10}

\sf \dashrightarrow \cancel \dfrac{84000}{10} = 8400

\sf \dashrightarrow 84000 + 8400

\sf \dashrightarrow Rs.92400

Value of the property at third year :

\sf \dashrightarrow 15\% \: of \: 92400

\sf \dashrightarrow \dfrac{15}{100} \times 92400

\sf \dashrightarrow \dfrac{3}{20} \times 92400

\sf \dashrightarrow \dfrac{3 \times 92400}{20} = \dfrac{277200}{20}

\sf \dashrightarrow \cancel \dfrac{277200}{20} = 13860

\sf \dashrightarrow 92400 + 13860

\sf \dashrightarrow Rs.106260

Hence, the value of the property after three years is ₹106260.

Similar questions