Math, asked by khalnayak4004, 2 months ago

The cost price 13 books is equals to the selling price of 10 books. Find the profit percent.​

Answers

Answered by priyasamanta501
22

Answer:

Let the cost price of one book be Rs.x

Cost price of 13 books be 13x

And the selling price of one book be Rs.y

Selling price of 10 books be 10y

According to condition:

10y=13x

⇒y =  \frac{13}{10}x

Profit is given by S.P-C.P= y-x

⇒ \frac{13}{10}x - x  \\  \\   ⇒\frac{13x - 10x}{10}  \\  \\ ⇒ \frac{2x}{10}

Profit percentage=

⇒ \frac{ \frac{2x}{10} }{x}  \times 100

⇒ \frac{2}{10} \times 100

⇒2 \times 10

⇒20\%

Therefore, The profit percentage is 20%

Answered by gabbarhere
21

Let the cost price of one book be Rs.x

Cost price of 13 books be 13x

And the selling price of one book be Rs.y

Selling price of 10 books be 10y

According to condition:

10y=13x

⇒y = \frac{13}{10}x⇒y=

10

13

x

Profit is given by S.P-C.P= y-x

\begin{gathered}⇒ \frac{13}{10}x - x \\ \\ ⇒\frac{13x - 10x}{10} \\ \\ ⇒ \frac{2x}{10} \end{gathered}

10

13

x−x

10

13x−10x

10

2x

Profit percentage=

⇒ \frac{ \frac{2x}{10} }{x} \times 100⇒

x

10

2x

×100

⇒ \frac{2}{10} \times 100⇒

10

2

×100

⇒2 \times 10⇒2×10

⇒20\%⇒20%

Therefore, The profit percentage is 20%

Similar questions