Math, asked by rohtashsharma6928, 10 months ago

The cost price of a bat and ball is rs.75.the retailer sold bat at 40% profit and ball at 60% loss.find the cost price of the bat if in the whole transaction he earns rs.20 as profit?

Answers

Answered by sanjeevk28012
0

Given :

The total cost price of bat and ball = Rs 75

The profit% on bat = 40 %

The loss% on ball = 60%

Profit earn on whole transition = Rs 20

To Find :

The cost price of the bat

Solution :

Let The cost price of bat = Rs A

Let The cost price of ball = Rs B

total cost price of bat and ball = Rs 75

So,   A   +   B =  Rs 75

Again

Profit% for bat = \dfrac{S.P_1- C.P_1}{C.P_1}

Or,  40% = \dfrac{S.P_1- C.P_1}{C.P_1}

or,   \dfrac{40}{100} = \dfrac{S.P_1- C.P_1}{C.P_1}

Or, \dfrac{40}{100}  + 1 = \dfrac{S.P_1}{C.P_1}

i.e  \dfrac{S.P_1}{C.P_1} = 1.4

S.P_1 = 1.4 C.P_1

Again

Loss% for ball = \dfrac{C.P_2- S.P_2}{C.P_2}

Or, 60% = \dfrac{C.P_2- S.P_2}{C.P_2}

Or,  \dfrac{60}{100} = \dfrac{C.P_2- S.P_2}{C.P_2}

Or,  \dfrac{S.P_2}{C.P_2} = 1 - \dfrac{60}{100}

i.e  \dfrac{S.P_2}{C.P_2} = 0.4

Or,  S.P_2= 0.4 C.P_2

A/Q

Total cost price of bat and ball = Rs 75

i.e C.P_1 + C.P_2 = 75       .............1

 Total profit = Rs 20

Or,  [ ( S.P_1 - C.P_1 ) + ( S.P_2 - C.P_2 ) = 20

Or,  [ S.P_1 + S.P_2 ) - ( C.P_1 + C.P_2 )] = 20

Or,  S.P_1 + S.P_2 = 20 + C.P_1 + C.P_2

∴    S.P_1 + S.P_2 = 20 + 75

i.e  S.P_1 + S.P_2 = Rs 95

As S.P_1  = 1.4 C.P_1

And  S.P_2  = 0.4 C.P_2

So,  1. 4 C.P_1  +  0.4 C.P_2  = 95       ..........2

Solving eq 1 and eq 2

 ( 1.4 C.P_1  +  0.4 C.P_2  ) - 0.4 ( C.P_1 + C.P_2 ) = 95 - 0.4 × 75

i.e  1 C.P_1 + 0  = 95 - 30

Or,   C.P_1  = 65

∴    C.P_1  = \dfrac{65}

i,e  C.P_1 = Rs 65

So,The cost price of bat = C.P_1 = Rs 65

Hence, The cost price of bat in whole transition is Rs 65 Answer

Similar questions