Math, asked by harleenjani797, 7 months ago

The csa of a right circular cyl8nd3r iss 2288 cm2 and the circunfenc3 is 88 cm find the height and tsa of the cyclinder

Answers

Answered by Anonymous
3

Step-by-step explanation:

\star\small\boxed{Circumference = 2πr}

88 = 2 ×\frac{22}{7} × r

 r =44 × \frac{7}{22}

 r = 2 × 7

 r = 14cm

\star\small\boxed{CSA \: of \: right \: circular \: cylinder=2πrh}

2288 = 2 ×\frac{22}{7} × 14 × h

1144 = 22 × 2h

44h = 1144

 h = 26cm

 height \: of \: this \: cylinder=26cm

\star\small\boxed{TSA \: of \: right \: circular \: cylinder=2πr(r+h)}

=> 2 × \frac{22}{7} × 14 × 40

=> 2 × 22 × 2 × 40

=> 44 × 80

=> 3520 \: cm²

Answered by Ataraxia
10

SOLUTION :-

Given :-

Circumference of the right circular cylinder = 88 cm

C.S.A of the right circular cylinder = 2288 cm²

\bullet\bf \ Circumference \ of \ cylinder = 2\pi r

 \longrightarrow \sf 2 \pi r = 88 \\\\\longrightarrow 2 \times \dfrac{22}{7} \times r = 88 \\\\\longrightarrow \dfrac{44}{7} \times r = 88 \\\\\longrightarrow r = 88 \times \dfrac{7}{44} \\\\\longrightarrow r = 2 \times 7 \\\\\longrightarrow \bf r = 14

\bullet \bf \ C.S.A \ of \ cylinder = 2\pi rh

 \longrightarrow \sf 2\pi rh = 2288 \\\\\longrightarrow 2 \times \dfrac{22}{7} \times 14 \times h = 2288\\\\\longrightarrow 2\times 22 \times  2 \times h = 2288\\\\\longrightarrow 88h = 2288 \\\\\longrightarrow \bf h = 26

\bullet\bf \ T.S.A \ of \ cylinder = 2\pi r (r+h)

  \longrightarrow\sf 2 \times \dfrac{22}{7}\times 14  \times (14+26) \\\\\longrightarrow 2\times 22 \times 2 \times 40 \\\\\longrightarrow\bf 3520 \ cm^2

Height of the cylinder = 26 cm

T.S.A of cylinder = 3520 cm²

Similar questions