Math, asked by harleenjani797, 5 months ago

The csa of a right circular cylinder iss 2288 cm2 and the circumfenceis 88 cm find the height and tsa of the cyclinder

Answers

Answered by Uriyella
0
  • The height of the cylinder = 26 cm.
  • The total surface area (T.S.A.) of the cylinder = 3520 cm².

Given :

  • The curved surface area (C.S.A.) = 2288 cm².
  • The circumference = 88 cm.

To Find :

  • The height of a right circular cylinder.
  • The total surface area (T.S.A.) of the cylinder.

Solution :

1) The height of the cylinder.

Given,

Cirumference = 88 cm

 : \implies \rm2\pi r = 88 \: cm

Also given,

C.S.A. of the cylinder = 2288 cm²

:  \implies \rm2\pi rh = 2288 \:  {cm}^{2}

Substitute the given value of the circumference in the formula of curved surface area (C.S.A.) of the cylinder.

:  \implies \rm88 \: cm \times h = 2288  \: {cm}^{2}  \\  \\  : \implies \rm h =   \cancel\dfrac{2288 \:  {cm}^{2} } {88 \: cm}  \\  \\  : \implies \rm h =    \cancel\dfrac{1144}{44}  \: cm \\  \\  : \implies \rm h =  \cancel\dfrac{572}{22}  \: cm \\  \\  :  \implies \rm  h =  \cancel\dfrac{286}{11}  \: cm \\  \\  :  \implies \rm h = 26 \: cm

Hence,

The height of a right circular cylinder is 26 cm.

_______________________________

2) The total surface area (T.S.A.) of the cylinder.

We know that,

 \blue{ \boxed{ \red{ \sf{T.S.A. \: Of \: The \: Cylinder = 2\pi r(r +h )}}}}

We need to find the radius (r) of the cylinder.

Given,

• The circumference = 88 cm

 :  \implies \rm2\pi r = 88 \: cm \\  \\  :  \implies \rm2  \times \dfrac{22}{7}  \times r = 88 \: cm \\  \\  :  \implies  \rm\dfrac{22}{7} \times r  =  \cancel \dfrac{88}{2}  \: cm \\  \\  :  \implies  \rm\dfrac{22}{7}  \times r = 44 \: cm \\  \\  :  \implies  \rm r = 44  \: cm\times  \frac{7}{22}  \\  \\  :  \implies r = 2 \: cm \times 7 \\  \\  :  \implies r = 14 \: cm

Hence, the radius (r) of the cylinder is 14 cm.

Substitute the given value of circumference in the formula of the total surface area (T.S.A.) of the cylinder.

:  \implies \rm 2\pi r \: (r + h)  \\  \\  :  \implies \rm88 \: cm \: (14 \: cm + 26 \: cm) \\  \\  :  \implies \rm 88 \: cm \: (40 \: cm) \\  \\  :  \implies \rm 88 \: cm \times 40 \: cm \\  \\  : \implies  \rm3520 \:  {cm}^{2}

Hence,

The total surface area (T.S.A.) of the cylinder is 3520 cm².

Similar questions