Math, asked by vedantbhoiryt, 7 months ago

The CSA of cylinder is 200π cm2. If the
radius of cylinder 5 cm. Find the height of
cylinder?​

Answers

Answered by lambavinayji4
7

We have,

Total surface area of cylinder =200π cm

2

r=5 cm

We know that total surface area of cylinder

=2πr(r+h)

So,

2π×5(5+h)=200π

5(5+h)=100

5+h=20

h=15 cm

So, the sum of the r and h

r+h=5+15=20 cm

Answered by ajay8949
0

 \huge\sf\bold{ \:\:\:\pink{A} \green{N} \red{S} \blue{W} \purple{E} \orange{R}}

  \:  \:  \:  \: \sf{ curved \: surface \: area \:  = 200π {cm}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \sf{radius \: of \: cylinder \:  = 5\: cm}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{height \: of \: cylinder \:  =  \:  ?}

  \:  \:  \:  \:  \: \:  \:  \:  \:  \:    \pink{\boxed {   \sf{csa \: of \: cylinder \:  = 2\pi rh}}}

  \:  \:  \: : ⟹  \:  \:  \:  \:  \: \sf {\: 2\pi rh = 200π}

  \:  \:  \:  \:  \:  \:  \: : ⟹ \sf{2  \times 5 \times h = 200}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⟹  \:  \: \sf{h =  \frac{200}{10} }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: : ⟹ \sf{ h = 20 \: cm}

Similar questions