Math, asked by Abhijitkeshari, 2 months ago

the cube of any positive integer cannot be in the form
1) 7m
2) 7m + 1
3) 7m + 3
4) 7m + 6


pls solve this it s urgent ​

Answers

Answered by rkk1399
4

Answer:

7m+2 is not valid

Step-by-step explanation:

for example: 7³=343

let m = 49

7m= 7(49) = 343

7m is valid

for example: 2³=8

let m = 1

7m+1 = 7(1) + 1 = 8

7m+1 is valid.

for example: 5³=125

let m = 14

7m+6= 7(14) + 6 = 125

7m+6 is valid.

Answered by amitnrw
8

Given : cube of any positive integer

To Find :  cannot be in the form

1) 7m

2) 7m + 1

3) 7m + 3

4) 7m + 6

Solution:

  Any positive  can be represented in the form  a = bq +  r  

Without losing generality  Hence any number can be of the form :

7k , 7k + 1 , 7k + 2 , 7k + 3 , 7k + 4 , 7k + 5 , 7k + 6

Lets cube each number

(7k)³  = 7 * 49k³ = 7m    

(a + b)³  = a³ + b³  + 3ab(a + b)

(7k + 1)³ = (7k)³ + 1  + 3*7k *(7k + 1)  = 7k ( 49k² + 21k +3)  + 1  = 7m + 1

(7k + 2)³ = (7k)³ + 8  + 3*7k*2 *(7k +3)  = 7k ( 49k² + 42k + 18)  + 7 + 1

=  7k ( 49k² + 42k + 18 + 1 )  + 1

= 7m + 1

(7k + 3)³ = (7k)³ + 27  + 3*7k*3 *(7k +3)  = 7k ( 49k² + 63k + 27)  + 21 + 6

=  7k ( 49k² + 63k + 27 + 31 )  + 6

= 7m + 6

Similarly  (7k + 4)³ = 7m + 1

 (7k + 5)³ = 7m + 6

 (7k + 6)³ = 7m + 6

7m , 7m + 1, 7m + 6  are three forms of   cube of any positive integer

Hence cube of any positive integer cannot be in the form 7m + 3  from the given options

Learn More:

prove that square of any positive integer is of the form 9k or 9k+1 ...

brainly.in/question/20017920

Prove that square of any positive even integer is always even ...

brainly.in/question/7353545

Similar questions