Math, asked by akhil155251, 2 months ago

the curled surface area of a cylinder
4400 cm2
and the
circonference of its base
find the height of the cylinder
220cm​

Answers

Answered by ajaj9680
0

Answer:

hi how are you i am fine i am tiping master

Step-by-step explanation:

Answered by prabhakardeva657
85

{\sf \: { \underline\fcolorbox{navy}{orange}{\color{darkblue}{ \: Given : \:-}}}}

 \sf \small \: ❥ \:  \green{ Curved \:  Surface \:  Area  \: of \:  cylinder} = 4400  \: cm ²

  \sf \: \small \: ❥ \: \green{ Circumference  \: of \:  it's  \: base} = 22 cm

{\sf{\fcolorbox{navy}{orange}{\color{darkblue}{Find :-}}}}

 \sf \: ❥ \:    \green{Height  \: of \:  cylinder}

{\sf{\fcolorbox{navy}{orange}{\color{darkblue}{Solution :-}}}}

To find Height of cylinder we need to find radius of it's base

We know that

Circumference of circle = 2 π × r

 \it \:  \red{22 cm }= \large \blue {2 ×  \frac{22}{7} × r}

 \it \:  \large \:  \: \blue{\frac{ 22 cm × 7 }{22 × 2 } }=  \red{r}

 \it \:  \large \blue{\frac {7}{2}  \small \: {cm }}\: =  \red {r}

Curved Surface Area of cylinder = 2 π × r × h

 \it \: \purple{ 4400 \: cm {}^{2}  = 2 \times  \frac{22}{7} \times  \frac{7}{2} \:  \:  \times} \green{h} \\

 \sf \:   \large \: \purple{ \frac{4400cm {}^{2} }{22} \:  }=  \green{h}

 \sf \:  \purple{200 \: cm} \:  =  \green{h}

Hence, the height of cylinder is 200 cm.

≪━─━─━─━─◈─━─━─━─━≫

Similar questions