Math, asked by anchalanchal1312, 1 year ago

The curve represented by x = 2 (cos t + sin t),
y = 5 (cos t - sin t) is
(a) a circle
(b) a parabola
(c) an ellipse
(d) a hyperbola​

Answers

Answered by dhruvsh
31

Answer:

x/2 = sin t + cos t

y/5 = cos t - sin t

Squaring both the relations and then adding to each other,

(x/2)^2 + (y/5)^2 = 2 (sin^2 t + cos^2 t) + 2 sint cost - 2 sint cost

x^2/4 + y^2/25 = 2

or,

x^2/8+y^2/50=1

So, it's an ellipse !! 。◕‿◕。

Answered by Anonymous
74

Answer:

\large\bold\red{(c)\:an\:ellipse}

Step-by-step explanation:

Given a curve represented by,

x = 2( \cos(t)  +  \sin(t) ) \\  \\  =  >  \frac{x}{2}  =  \cos(t)  +  \sin(t)  \:  \:  \:  \:  \: ..........(1)

And,

y = 5( \cos(t ) -  \sin(t) )  \\  \\  =  >  \frac{y}{5}  =  \cos(t )  -  \sin(t)  \:  \:  \:  \:  \: ...........(2)

Now,

Squaring and adding both the Equation,

We get,

 =  >  {( \frac{x}{2}) }^{2}  +    {( \frac{y}{5} )}^{2}  =  {( \cos t +  \sin t)  }^{2}  +  {( \cos t  -  \sin t) }^{2}  \\  \\  =  >  \frac{ {x}^{2} }{4}  +  \frac{ {y}^{2} }{25}  =  { \cos}^{2} t +  { \sin}^{2} t + \cancel{ 2 \cos(t)  \sin(t)  }+  { \cos }^{2} t +  { \sin }^{2}t -  \cancel{2 \cos(t)   \sin(t) } \\  \\  =  >  \frac{ {x}^{2} }{4}  +  \frac{ {y}^{2} }{25}  = 2( { \cos }^{2} t +  { \sin }^{2} t)  \\  \\  =  >    \frac{ {x}^{2} }{4}  +   \frac{ {y}^{2} }{25}  = 2 \\  \\  =  >    \frac{1}{2}  \times ( \frac{ {x}^{2} }{ {2}^{2} }  +  \frac{ {y}^{2} }{ {5}^{2} } ) =   \frac{1}{2}  \times 2 \\  \\  =  >  \frac{ {x}^{2} }{8}  +  \frac{ {y}^{2} }{50}  = 1 \\  \\  = >\large\bold{  \frac{ {x}^{2} }{ {(2 \sqrt{2}) }^{2} }  +  \frac{ {y}^{2} }{ {(5 \sqrt{2} )}^{2} }  = 1}

Clearly,

It's in the form of Equation of an ellipse, i.e,

  \large \boxed{ \bold \purple{\frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1}}

Hence,

It represents (c) an ellipse.

Similar questions