Math, asked by shivamhimself26, 3 months ago

The curve y2 = ux³ + v passes through a point P(2,3) and dy/dx = 4 at P. The values of u and v are​

Answers

Answered by alisasmoky22
3

Answer:

u = 2, v = - 7

Step-by-step explanation:

at P(2, 3), 3^2 = u * (2)^3 + v, or, 9 = 8u + v (1)

Now, differentiating given equation, 2y*(dy/dx) = 3*x^2*u

or, u = (2*3*4)/(3*2^2) = 2

From (1) we get, 9 = 8*2 + v

or, v = -7

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {y}^{2} = u {x}^{3} + v -  -  - (1)

Since, it is given that curve (1) passes through P(2, 3).

\rm :\implies\: {3}^{2} = u {(2)}^{3} + v

\rm :\longmapsto\:9 = 8u + v -  -  - (2)

Now,

\rm :\longmapsto\: {y}^{2} = u {x}^{3} + v

Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} {y}^{2} = \dfrac{d}{dx}(u {x}^{3} + v)

\rm :\longmapsto\:2y \dfrac{dy}{dx} =u \dfrac{d}{dx}{x}^{3} + \dfrac{d}{dx}v

\rm :\longmapsto\:2y\dfrac{dy}{dx} = 3u {x}^{2}  + 0

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{3u {x}^{2} }{2y}

Now it is given that,

\rm :\longmapsto\:\dfrac{dy}{dx}_{(P)} = 4

\rm :\longmapsto\:\dfrac{dy}{dx}_{(2,3)} = 4

\rm :\longmapsto\:\dfrac{3u {(2)}^{2} }{2 \times 3}  = 4

\rm :\implies\:\boxed{\bf \:u = 2}

On substituting the value of u in equation (1), we get

\rm :\longmapsto\:9 = 8 \times 2 + v

\rm :\longmapsto\:9 = 16 + v

\rm :\longmapsto\:9 - 16 =  v

\bf\implies \: \: \boxed{\bf \:  v =  -  \: 7}

Additional Information :-

 \boxed{\bf \: \dfrac{d}{dx}k = 0}

 \boxed{\bf \: \dfrac{d}{dx}x = 1}

 \boxed{\bf \: \dfrac{d}{dx} {x}^{2}  = 2x}

 \boxed{\bf \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }

 \boxed{\bf \: \dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x}}}

 \boxed{\bf \: \dfrac{d}{dx}kf(x) = k\dfrac{d}{dx}f(x)}

 \boxed{\bf \: \dfrac{d}{dx}u.v = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}

Similar questions