Math, asked by corona1, 3 months ago

The curved surface area and the total surface area of a cone are 550 cm2 and 704 cm2 respectively. What is the volume of the cone?​

Answers

Answered by Anonymous
58

☯ Let's consider radius of cone be r cm.

Given:

\begin{gathered}\sf Here \begin{cases} & \sf{Total \:  surface \:  area = \bf{704\: {cm}^{2} }} \\ & \sf{Curved \:  surface \:  area = \bf{550 \:  {cm}^{2} }} \end{cases}\\ \\\end{gathered}

⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\\end{gathered}

  • The curved surface area and the total surface area of a cone are 550 cm² and 704 cm².

⠀⠀⠀

\begin{gathered}\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\\end{gathered}

TSA & CSA of cone is given by,

\begin{gathered}\star\;{\boxed{\sf{\pink{TSA_{\;(cone)} = \pi rl}}}}\end{gathered}

\begin{gathered}\star\;{\boxed{\sf{\pink{CSA_{\;(cone)} = \pi rl + \pi {r}^{2} }}}}\\ \\\end{gathered}

⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Now,\:Putting\:values,}}}\\ \\\end{gathered}

 : \implies \sf \pi rl + \pi {r}^{2} + \pi rl = 704 - 550\\

Therefore,

  • πrl is cancelled from both sides.

:\implies  \sf  \pi {r}^{2} = 704 - 550\\\\

\begin{gathered}:\implies\sf  \dfrac{22}{7}  {r}^{2}  = 154\\ \\ \\ :\implies\sf  {r}^{2}   =  \frac{154 \times 7}{22} \\\ \\ \\ :\implies\sf {r}^{2}   =  \frac{7 \times 7}{1}\\ \\ \\ :\implies\sf {r}^{2}   = 49\\ \\ \\ :\implies\sf r =  \sqrt{49} \\ \\ \\  :\implies{\underline{\boxed{\frak{\purple{r= 7cm}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\:{\underline{\sf{Radius \:of\:the\:cone\:is\: {\textbf{\textsf{7\:cm}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Finding\:slant\:height \: of \: the\: cone,}}}\\ \\\end{gathered}

⠀⠀⠀

 \sf \implies\star\;{\boxed{\sf{\pink{TSA_{\;(cone)} = \pi rl}}}}\\  \\  \\ :  \implies \sf  \frac{22}{7}  \times 7 \times l = 550 \\  \\  \\  : \implies \sf22l = 550 \\  \\  \\: \implies \sf l =   \frac{550}{22}  \\  \\  \\  :\implies{\underline{\boxed{\frak{\purple{l = 25cm}}}}}\;

\therefore\:{\underline{\sf{Slant \: height \:of\:the\:cone\:is\: {\textbf{\textsf{25\:cm}}}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Finding\:height \: of \: the\: cone,}}}\\ \\\end{gathered}

☯ By using Pythagorean theorm,

  \bigstar \:  \boxed{ \sf \pink{ {l}^{2}  =  {r}^{2}  +  {h}^{2} }} \\  \\  \\  \implies \sf  {25}^{2}  =  {7}^{2}  +  {h}^{2}  \\  \\  \\ \implies \sf625 = 49 +  {h}^{2}  \\  \\  \\ \implies \sf {h}^{2}  = 625 - 49 \\  \\  \\ \implies \sf {h}^{2}  = 576 \\  \\  \\ \implies \sf h =  \sqrt{576} \\  \\  \\   :  \implies {\underline{\boxed{\frak{\purple{h = 24cm}}}}}\;

⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\\end{gathered}

Volume of cone is given by,

  • \begin{gathered}\star\;{\boxed{\sf{\pink{Volume_{\;(cone)} = \pi \times  {r}^{2} \frac{h}{3}  }}}}\\ \end{gathered}

Therefore,

\begin{gathered}:\implies\sf  \dfrac{22}{7} \times  {7}^{2} \times \dfrac{24}{3}  \\ \\ \\ :\implies\sf {22} \times  {7} \times \dfrac{24}{3} \\ \\ \\ :\implies\sf 22 \times 7 \times 8 \\ \\ \\ :\implies\sf 22 \times 56\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{1232 {cm}^{3} }}}}}\;\bigstar\\ \\\end{gathered}

\therefore\:{\underline{\sf{Thus,\:the\:volume\:of\:the\:cone\:is\: {\pmb{\frak{1232 \: cm^3}}}.}}}

Answered by Anonymous
1

Given :- Curved surface area of a cone is 550cm² and total surface area is 704cm².

To Find :- Volume of the given cone .

Used Formulae :- Curved Surface Area of cone ( CSA ) = πrl

:- Total Surface area of Cone ( TSA ) = πr ( l + r ) .

:- Volume of cone = πr²h/3.

:- Slant height of the cone = l² = r²+h².

Solution :-

Let , height of the cone = h cm

radius of the cone = r cm

slant height of the cone = l cm

TSA of given Cone = 704 cm²

πr ( l + r ) = 704

πrl + πr² = 704

550 + πr² = 704

πr² = 704 - 550

πr² = 154

 \frac{22}{7} \times  {r}^{2}  = 154

 {r}^{2}  =  \frac{154 \times 7}{22}

 {r}^{2}  = 49

r =  \sqrt{49}

r = 7cm

Now , Putting r = 7 cm In the Formulae of Curved surface area of the cone .

\pi \: r \: l \:  = 550

 \frac{22 \times 7 \times l}{7}  = 550

22 \times l = 550

l =  \frac{550}{22}

l = 25cm

Now as ,

l² = r² + h²

( 25 ) ² = ( 7 ) ² + h²

h² = ( 25 ) ² - ( 7 ) ²

h² = 625 - 49

h² = 576

h = √576

h = 24 cm

Now ,

Volume ( V ) of the cone = πr²h/3

v \:  =  \frac{22 \times 7 \times 7 \times 24}{3 \times 7}

v = 154 \times 8

V = 1232 cm³.

Similar questions