Math, asked by varshakumari4131, 9 months ago

The curved surface area and the volume of a
toy, cylindrical in shape, are 132 cm2 and
462 cm3 respectively. Find, its diameter and
its length.​

Answers

Answered by Anonymous
5

Answer:

Ur answer is here in this ATTACHMENT...

Step-by-step explanation:

Diameter of the toy = 14 cm

Height of the toy = 3 cm

Attachments:
Answered by SarcasticL0ve
6

GivEn:-

  • Curved surface area of cylindrical toy = 132cm²

  • Volume of cylindrical toy = 462cm³

To find:-

  • Diameter of Cylindrical toy.

SoluTion:-

✩ Let the radius of the toy be r cm.

✩ And height of toy be h cm.

⋆ Reference of image is shown in diagram

\setlength{\unitlength}{1cm}\begin{picture}(12,4)\thicklines\put(2.7,2.7){$.$}\put(6,3){\circle{2}}\put(6,6){\circle{2}}\put(6,3){\line(0,1){3}}\put(5.3,3){\line(0,1){3}}\put(6.73,3){\line(0,1){3}}\put(6,3){\line(1,0){0.7}}\put(6,6){\line(1,0){0.7}}\put(6.2,6.13){$r$}\put(6.8,4.5){$h$}\end{picture}

Now,

\dag\;{\underline{\underline{\bf{\pink{According\;to\;question:-}}}}}

GivEn that,

✇ Curved surface area of cylinder = 132cm²

As we know that,

\dag\;{\underline{\boxed{\bf{\blue{C.S.A.\;of\;Cylinder = 2 \pi rh}}}}}

:\implies 2πrh = 132

:\implies\sf r = \dfrac{132}{2 \pi h}\;\;\;...(1)

Also,

✇ Volume of cylinder = 462 cm³

As we know that,

\dag\;{\underline{\boxed{\bf{\blue{Volume\;of\; Cylinder = πr^2h}}}}}

:\implies πr²h = 462cm³

:\implies\sf r^2 = \dfrac{462}{ \pi h}\;\;\;...(2)

★ Now, Substituting value of r from eq(1) into eq(2) we get, -

:\implies\sf  \dfrac{(132)^2}{(2)^2 \times ( \pi)^2 \times (h)^2} = \dfrac{462}{ \pi h}

\\

:\implies\sf  4 \times \pi \times h = \dfrac{132 \times 132}{462}

\\

:\implies\sf  h = \dfrac{132 \times 132}{462 \times \pi \times 4}

\\

:\implies\sf  h = \dfrac{132 \times 132 \times 7}{462 \times 22 \times h}

\\

:\implies{\underline{\boxed{\bf{\purple{h = 3\;cm}}}}}

▬▬▬▬▬▬▬▬▬▬

★ Now Put the value of h in eq(1), we get

:\implies\sf r = \dfrac{132 \times 7}{2 \times \22 \times 3}

:\implies{\underline{\boxed{\bf{\purple{r = 7\;cm}}}}}

\therefore Diameter of the cylindrical toy = 2 × r

:\implies\sf 2 \times 7 = 14\;cm

▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Formulas related to cylinder -

⠀⠀⠀✩ \sf Lateral\;Surface\;Area\;of\;cylinder = 2 \pi rh

⠀⠀⠀✩ \sf Total\;Surface\;Area\;of\;cylinder = 2 \pi r[r + h]

⠀⠀⠀✩ \sf Volume\;of\;cylinder = \pi r^2h

▬▬▬▬▬▬▬▬▬▬

Similar questions