Math, asked by aman78667, 10 months ago

The curved surface area of a cone is 4070 cm2 and its diameter is 70 cm. What is its slant height ?​

Answers

Answered by Anonymous
5

Answer:

d = 70 R=35

CSA of cone = IRI

4070 = 22/7. 35

4070/35 = 22/7|

814/7 *7/22 = 1

37 cm = 1

Thanks ❤️❤️❤️❤️

Answered by Anonymous
93

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge\sf\red{Given\::}

  • \sf\gray{The \:C.S.A\: of\: a\: cone\: =\: 4070\: cm^2}
  • \sf\gray{Diameter\: =\: 70\: cm}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge\sf\blue{To\:Find\::}

  • \sf\gray{Slant \:height\: of\: the\: cone}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge\sf\pink{Solution\::}

\dagger\:\:\boxed{ \sf {\orange{ Radius\: of \:cone = \frac{Diameter}{2 }}}}

\leadsto \sf \purple {Radius\:of\:cone = \dfrac{\cancel{70}}{\cancel{2}}\:}

\leadsto \sf \green { Radius\:of\:cone = 35\:cm}

\dagger\:\:\boxed{ \sf{\orange{C.S.A\:of \:a\: cone\: is  = \pi rl }}}

\leadsto \sf \purple {\pi rl = 4070}

\leadsto \sf \green {\dfrac{22}{\cancel7}\times \cancel{35}\times L = 4070}

\leadsto \sf \purple {22 \times 5 L = 4070}

\leadsto \sf \green {110 \:L}

\leadsto \sf \purple {L = \dfrac{\cancel{4070}}{\cancel{110}} \:}

\leadsto \sf \green { L = 37\:cm}

\star\:\:\sf\underline\red{Slant\: height\: of\: the \:cone\: is \:37\:cm}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂


Anonymous: Perfect explanation :P
Similar questions