Math, asked by raaghavnaidu5382, 10 months ago

The curved surface area of a Cylinder 1210 cm² and its diameter is 20cm. Find its height and volume.

Answers

Answered by Anonymous
15

Given:-

  • Curved surface area of a Cylinder = 1210 cm².

  • Diameter,d = 20cm.

To find out:-

Find its height and volume.

Formula used:-

  • Curved surface area of cylinder = 2πrh

  • Volume of cylinder = πr²h

Solution:-

We know that,

Radius = d/2 = 20/2 = 10 cm

Now,

( 1 )

Curved surface area = 1210 cm²

⇒ 2 × π × r × h = 1210

⇒ 2 × 22/7 × 10 × h = 1210

⇒ 44/7 × 10 × h = 1210

⇒ 440/7 × h = 1210

⇒ h = 1210 × 7 / 440

⇒ h = 8470/440

⇒ h = 19.25 cm

( 2 )

Volume of cylinder = π × r² × h

= 22/7 × ( 10 )² × 19.25

= 22/7 × 100 × 1925/100

= 22/7 × 1925

= 22 × 275

= 6050 cm³

Hence ,the height of cylinder is 19.25 cm and the volume of cylinder is 6050 cm³.

Answered by sethrollins13
150

✯✯ QUESTION ✯✯

The curved surface area of a Cylinder 1210 cm² and its diameter is 20cm. Find its height and volume.

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\implies\tt{C.S.A\:of\:Cylinder=1210{cm}^{2}}

\implies\tt{Diameter=20cm}

\implies\tt{Radius=\cancel\dfrac{20}{2}=10cm}

For Height :

Using Formula : -

\implies\tt{\small{\boxed{\bold{\bold{\red{\sf{C.S.A\:of\:Cylinder=2\pi{rh}}}}}}}}

Putting Values : -

\implies\tt{1210=2\times\dfrac{22}{7}\times{10}\times{h}}

\implies\tt{1210\times{7}=440h}

\implies\tt{8470=440h}

\implies\tt{h=\cancel\dfrac{8470}{440}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{h}\orange{=}\purple{19.25}}}

So , The height is 19.25cm..

_______________________

For Volume : -

Using Formula : -

\implies\tt{\small{\boxed{\bold{\bold{\blue{\sf{Volume\:of\:Cylinder=\pi{{r}^{2}h}}}}}}}}

Putting Values : -

\implies\tt{\dfrac{22}{7}\times{10}\times{10}\times{19.25}}

\implies\tt{\dfrac{2200\times{19.25}}{7}}

\implies\tt{\cancel\dfrac{42350}{7}}

\implies\tt\boxed{6050{cm}^{3}}

So , The volume of Cylinder is 6059cm³...

Similar questions