Math, asked by aryanbharadwaj9599, 10 months ago

The curved surface area of a cylinder is 1210cm square and its diameter is 20cm. Find the height

Answers

Answered by 77vijay777
0

Answer:

19.25

Step-by-step explanation:

csa=1210

2πrh=1210

2×22÷7×10×h=1210

62.8×h=1210

h=1210÷62.8

ans=19.25

Answered by silentlover45
4

\large\underline\pink{Given:-}

  • Curved surface area of cylinder = 1210 cm²
  • Cylinder of Diameter = 20 cm

\large\underline\pink{To find:-}

  • Fine the height ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \:  \therefore \: \: Curved \: \: surface \: \: area \: \: of \: \: Cylinder \: \: = \: \: {2} \: \pi \: r \: h

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {10} \: \times \: {h} \: \: = \: \: {1210}

\: \: \: \: \:  \leadsto \: \: \frac{44}{7} \: \times \: {10} \: \times \: {h} \: \: = \: \: {1210}

\: \: \: \: \:  \leadsto \: \: \frac{440}{7} \: \times \: {h} \: \: = \: \: {1210}

\: \: \: \: \:  \leadsto \: \: {h} \: \: = \: \: {1210} \: \times \: \frac{7}{440}

\: \: \: \: \:  \leadsto \: \: {h} \: \: = \: \: {110} \: \times \: \frac{7}{40}

\: \: \: \: \:  \leadsto \: \: {h} \: \: = \: \: {10} \: \times \: \frac{7}{4}

\: \: \: \: \:  \leadsto \: \: {h} \: \: = \: \: \frac{77}{4}

\: \: \: \: \:  \leadsto \: \: {h} \: \: = \: \: {19.5} \: cm.

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: The \: \: height \: \: of \: \: a \: \: cylinder \: \: {19.5} \: cm.

\large\underline\pink{More \: Important:-}

Volume of cylinder ( Area of base × height ).

= (πr²) × h

= πr²h

Curved surface = ( Perimeter of base ) × height.

= (2πr) × h

= πrh

Total surface are = Area of circular ends + curved surface area.

= 2πr² + 2πrh

= 2πr(r + h)

Where,

r = radius of the circular base of the cylinder.

h = height of cylinder.

__________________________________

Similar questions