Math, asked by Anonymous, 3 months ago

The curved surface area of a cylinder is 264m² and its volume is 924m⁴ . The diameter of the cylinder is?

Answers

Answered by Anonymous
5

CSA = 2πrh

2πrh = 264

πrh = 132

Volume = πr²h

πr²h = 924

132r = 924

r = 7

Diameter = 2r = 14 m

Answered by Anonymous
43

Given:

  • The curved surface area of a cylinder is 264m²
  • the volume of the cylinder is volume is 924m³

\\

To find :

  • the diameter of the cylinder

\\

Solution:

 {\purple{ \underline{ \mathfrak{ \dag \: As \: we \: know \: that : }}}}

  • C.S.A Of the cylinder is {\bf{\green{26{4m}^{2}}}}

  • Volume of the cylinder is {\bf{\green{92{4m}^{2}}}}

Now, the formulas of them are {\downarrow}

 \longrightarrow\blue{ \underline{ \boxed{ \pink{ \mathfrak{curved \: surface \: area \:  = 2\pi \: r h}}}} \bigstar}

 \longrightarrow\blue{ \underline{ \boxed{ \pink{ \mathfrak{ volume = \pi \:  {r}^{2}h }}}} \bigstar}

hence,

  \longrightarrow \sf \: \frac{\pi {r}^{2}h }{2\pi \: rh}  =  \frac{924}{264}  \\  \\  \\  \longrightarrow \sf \: \frac{ \cancel\pi {r}^{2}\cancel{h} }{2\cancel\pi \: r\cancel{h}}  =  \frac{924}{264}   \\  \\  \\  \longrightarrow \sf \:  \frac{ {r}^{2} }{2r}  =   \cancel\frac{924}{264}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \sf \:  \frac{ \cancel{{r}^{2}} }{ 2\cancel{ r}}  = 3.5 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \sf \:  \frac{r}{2}  = 3.5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \sf \: r \:  = 3.5 \times 2 \:  \:  \:  \:  \\  \\  \\  \longrightarrow \sf \: r = 7m \bigstar \:  \:  \:  \:

We know,

  • diameter = 2(radius)

➪ diameter =  \bf\green {14m}

Similar questions