Math, asked by niloferkasmani0, 10 months ago

The curved surface area of a cylinder is
3850 sq.cm and the curcumference of the base
is 220cm. Calculate:
a] The height of a cylinder
b] Volume of the cylinder​

Answers

Answered by Brâiñlynêha
36

Given :-

The C.S.A of cylinder is 3850 sq.cm

Circumference of base =220

To find :-

The height of cylinder

Volume of cylinder

Now ,

A.T.Q

Formula used :-

\boxed{\sf{C.S.A\:of\: cylinder=2\pi r h}}

\boxed{\sf{Volume\:of\: cylinder=\pi r{}^{2} h}}

First find the Height of cylinder

● Circumference = 2πr

\sf\implies 2\pi r h=C.S.A\\ \\ \sf \bullet Put\:the\:value\:of\: circumference= 220cm\\ \\ \sf\implies 220\times h=3850\\ \\ \sf\implies  h=\cancel{\dfrac{3850}{220}}\\ \\ \sf\implies h=17.5cm

  • Now the Volume of cylinder
  • we have to find the radius of cylinder to find volume

So find the value of r

\sf\implies 2\pi r h=3850\\ \\ \sf\implies 2\times \dfrac{22}{7}\times r\times 17.5=3850\\ \\ \sf\implies  \dfrac{2\times 22\times 17.5}{7}\times r=3850\\ \\ \sf\implies \cancel{\dfrac{770}{7}}\times r=3850\\ \\ \sf \implies 110\times r=3850\\ \\ \sf\implies r= \cancel{\dfrac{3850}{110}}\\ \\ \sf \implies r= 35cm

Now finally find the volume of cylinder

\sf\implies Volume\:of\: cylinder=\pi r{}^{2} h\\ \\ \sf\implies Volume\:of\: cylinder= \dfrac{22}{\cancel7}\times \cancel{35}\times 35\times 17.5\\ \\ \sf\implies Volume\:of\: cylinder=22\times 5\times  35\times 17.5\\ \\ \sf\implies Volume =67375cm{}^{3}

\underline{\dag{\sf{Height\:of\: cylinder=17.5cm}}}

\underline{\dag{\sf{Volume\:of \: cylinder= 67375cm{}^{3}}}}

Answered by NightmareQueena
7

☑️ Given That :

  • Curved Surface Area of cylinder (C.S.A.) = 3850 sq. cm
  • Circumference = 220 cm

━━━━━━━━━━━━━━━━━━━━━━━━

☑️ To Find :

  • (a) Height of the Cylinder
  • (b) Volume of the Cylinder

━━━━━━━━━━━━━━━━━━━━━━━━

☑️ As we know that :

\implies{\large{\boxed{\sf{\underline{\underline{\blue{ C.S.A. \:Of \: The \: Cylinder = 2πrh }}}}}}}

\implies{\large{\boxed{\sf{\underline{\underline{\blue{ Volume \: Of \: The \: Cylinder =  π{r}^2h}}}}}}}

\implies\large{\boxed{\sf{\underline{\underline{\blue{ Circumference = 2πr }}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\{\green{\boxed{\boxed{\sf{\underline{\underline{\pink{.SoLutiOn.}}}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━

(a) To Find the height of the cylinder,

Here,

C.S.A. of the cylinder = 2πrh

\implies 3850 = Circumference × h

\implies 3850 = 220 × h

\implies h = 3850/220

\implies \large{\boxed{\sf{\underline{\orange{ h = 17.5 \: cm}}}}}

\therefore The Required Height of the cylinder is 17.5 cm.

━━━━━━━━━━━━━━━━━━━━━━━━

(b) To Find the Volume of the Cylinder,

We need to Find the value of r

Here,

\implies 2πrh = 3850

\implies 2 \times  \frac{22}{7}  \times r\times 17.5 = 3850

\implies r =  \frac{3850 \times 7}{2 \times 22 \times 17.5}

\implies r =  \frac{26950}{770}

\implies r = 35 cm

Now,

Volume Of The Cylinder = π{r}^2h

on putting all the required values

\implies\: Volume \:Of\: The\: Cylinder \:=  \frac{22}{7}  \times 35 \times 35 \times 17.5

\implies Volume of The Cylinder =  \frac{471625}{7}

\implies{\large{\boxed{\sf{\underline{\orange{Volume \: Of \: The \: Cylinder = 67375\:{cm}^3}}}}}}

\therefore The Required Volume of the Cylinder Will be 67375 cubic cm.

━━━━━━━━━━━━━━━━━━━━━━━━

Hope It Will Be Helpful To You Mate

#be_brainly

Similar questions