Math, asked by abhisheksingh452, 2 months ago

The curved surface area of a cylinder is 540 square centimetres .If its height is 300cm,then find the diameter of the base of the cylinder.(Take π=22/7)​

Answers

Answered by BrainlyRish
4

Given : The curved surface area of a cylinder of height 300 cm is 540 cm².

Need To Find : Base Diameter of of Cylinder.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider Base Radius of Cylinder be x .

\underline {\frak{ As, \:We\:Know\:that\:}}\\

⠀⠀⠀⠀⠀\underline {\boxed {\sf{ Curved \:Surface \:Area\:_{(Cylinder)} = 2\pi r h \:sq.units }}}\\

⠀⠀⠀⠀⠀Here r is the Base Radius of Cylinder in cm , h is the Height of Cylinder in cm and \pi=\:\dfrac{22}{7} and we have given with Curved surface area of Cylinder is 540 cm² .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf { 2 \times \pi \times x \times 300 = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf {  \pi \times x \times 600 = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf {  \dfrac{22}{7}  \times x \times 600 = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf {   x  = \dfrac{540\times 7 }{22\times 600}  }\\

⠀⠀⠀⠀⠀:\implies \sf {   x  = \dfrac{3780}{13200}  }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 0.286\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Base\:Radius \:of\:Cylinder \:is\:\bf{0.286\: cm}}}}\\

⠀⠀⠀⠀⠀Finding Diameter using Radius of Cylinder :

⠀⠀⠀⠀⠀\underline {\boxed {\sf{ Diameter = 2\times r \:units }}}\\

⠀⠀⠀⠀⠀Here r is the Base Radius of Cylinder in cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf {  Diameter = 2 \times 0.286  }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Diameter = 0.572\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Hence,\:Base\:Diameter \:of\:Cylinder \:is\:\bf{0.572\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed {\sf{ \mid {\overline {\underline { \bigstar Verification \:}}}\mid}}}\\\\

\underline {\frak{ As, \:We\:Know\:that\:}}\\

⠀⠀⠀⠀⠀\underline {\boxed {\sf{ Curved \:Surface \:Area\:_{(Cylinder)} = 2\pi r h \:sq.units }}}\\

⠀⠀⠀⠀⠀Here r is the Base Radius of Cylinder in cm , h is the Height of Cylinder in cm and \pi=\:\dfrac{22}{7} and we have given with Curved surface area of Cylinder is 540 cm² .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf { 2 \times \pi \times 0.286 \times 300 = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf { 600 \times \pi \times 0.286  = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf { 171.6 \times \pi   = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf { \cancel {171.6} \times \dfrac{22}{\cancel {7}}   = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf { 24.53 \times 22   = 540 cm^{2} }\\

⠀⠀⠀⠀⠀:\implies \sf { 539.66 cm^{2}    = 540 cm^{2} }\\

By doing Round off :

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  540cm^{2} = 540\: cm^{2}}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \bf{ Hence \:Verified \:}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions