Math, asked by goyalakshat2020, 2 months ago

The curved surface area of a cylindrical pillar is 264 m- and its volume is 924 m. Find
the diameter and height of the pillar.​

Answers

Answered by divyanshumeena1987
1

Answer:

diameter is 14 cm and height is 6cm

Answered by SANDHIVA1974
4

 \large \dag Question :-

The curved surface area of a cylindrical pillar is 264 m square and its volume is 924 m square.find the diameter and height of the pillar.

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Diameter \: of \:  piller\:  is \:14 \: m }} }\\

\red\dashrightarrow\underline{\underline{\sf  \green{Height \: of \:  piller\:  is \:6 \: m }} }\\

 \large \dag Step by step Explanation :-

❒ We know that curved surface area of cylinder is :-

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{CSA =  2\pmb\pi{r}^{}h \:  \:  \: }}}}

where

r = Radius of base of Cylinder

h = Height of Cylinder

Now here in the question we have,

CSA = 264 m²

⏩ Putting Value in formula ;

:\longmapsto \rm 264 = 2\pi rh \\  \\

:\longmapsto \rm\pi rh =\cancel  \frac{264}{2}  \\  \\

\purple{  \large :\longmapsto  \underline {\boxed{{\bf \pmb\pi rh = 132} }}}----(1)

❒ Also we know that volume of cylinder is :-

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{Volume =  \pmb\pi{r}^{2}h \:  \:  \: }}}}

where

r = Radius of base of Cylinder

h = Height of Cylinder

Now here in the question we have,

Volume = 924 m³

⏩ Putting Value in formula ;

:\longmapsto \rm 924 = \pi {r}^{2} h \\  \\

:\longmapsto \rm 924 = (\pi rh).r \\  \\

✧ Putting Value of  \large \pmb{\sf\pi rh}

:\longmapsto \rm 924 = 132 \times r \\  \\

:\longmapsto \rm r =   \cancel\frac{924}{132}  \\  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf r = 7 \: m} }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{Radius \:  of \: Piller = 7 \: m}}}}}

  \therefore\rm Diameter = 2 \times Radius \\  \\

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{Diameter \:  of \:  Piller   = 14 \: m}}}}}

⏩ Putting Value of r in in eq (1) :-

:\longmapsto \rm \pi \times 7 \times h = 132 \\  \\

:\longmapsto \rm  \frac{22}{ \cancel7}  \times \cancel 7 \times h = 132 \\  \\

:\longmapsto \rm h =  \cancel \frac{132}{22}  \\  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf h= 6 \: m} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{\text Height \:  of \:  Piller   =6\: m}}}}}

Similar questions