Math, asked by kabilansenthilkumarc, 1 month ago

The curved surface area of a right circular cone 12320cm2. If the radius of the base is 56cm , find
the height of the cone.

Answers

Answered by ʝεɳყ
98

Given :

  • Right circular cone = 12320cm²
  • Radius of the base = 56cm

To Find :

  • Height of the cone

Solution :

We have, π = 22/7 and r = 56

So to find the height of the cone. First we have to find the curved surface area of a right circular cone.

By using formula,

⇒ CSA of cone = 12320

⇒ πrl = 12320

⇒ 22/7 × 56 × l = 12320

⇒ l = 12320 × 7 / 22 × 56

⇒ l = 86240 / 1232

⇒ l = 43120 / 616

⇒ l = 21560 / 308

⇒ l = 10780 / 154

⇒ l = 5390 / 77

⇒ l = 70cm

We have, l = 70cm and r = 56cm

Now we have to find height of the cone

By using Formula,

⇒ Height of the cone = √l² - r²

⇒ Height of the cone = √70² - 56²

⇒ Height of the cone = √4900 - 3136

⇒ Height of the cone = √1764

⇒ Height of the cone = 42cm

° Height of the cone = 42cm

__________________________

Answered by Híɾo
259

 {\huge {\underline {\bf {\blue {Question}}}}}

The curved surface area of a right circular cone is 12320  {\sf {cm}^{2}} . If the radius of the base is 56cm, find the height of the cone.

 {\huge {\underline {\bf {\blue {Answer}}}}}

Given :-

  • The curved surface area of a right circular cone is 12320  {\sf {cm}^{2}}
  • The radius of the base is 56 cm

To Find :-

  • Height of the cone.

Solution :-

Use  \pi =  \sf \dfrac {22}{7}

 \implies Curved surface area of cone is 12320  {\sf {cm}^{2}}

 {\boxed {\sf { Curved~ Surface~ area~ of~ cone = \pi r l }}}

 \implies  \sf \pi r l = 12310  {\sf {cm}^{2}}

 \implies  {\sf {{\dfrac {22}{7}} \times 56 \times l = 12320}}

 \implies  {\sf {{\dfrac {22}{{\cancel{7}}} \times {\cancel {{56}}^{8} \times l = 12320}}}}

 \implies  {\sf {22 \times 8 \times l = 12320}}

 \implies  {\sf {176 \times l = 12320}}

 \implies  {\sf {l = {\dfrac {12320}{176}}}}

 \implies  {\sf {l = {\dfrac {\cancel {12320}}{{\cancel{176}}}}}}

 \implies  {\underline {\boxed {\sf {Slant~ height (l) = 70 cm}}}}

Now, we have Slant height = 70 cm and radius = 56 cm.

 {\boxed {\sf {Height~ of~ cone = {\sqrt {{length}^{2} - {radius}{2}}}}}}

Substitute the value of length and radius in the above formula.

 \implies  {\sf {Height~ of~ cone = {\sqrt {{70}^{2} - {56}^{2}}}}}

 \implies  {\sf {Height~ of~ cone = {\sqrt {4900 - 3136}}}}

 \implies  {\sf {Height~ of~ cone = {\sqrt {1764}}}}

 \implies  {\underline {\boxed {\sf {Height~ of~ cone = 42 cm}}}}

 {\sf {\underline {\purple {Hence,~ height~ of~ the~ cone~ is~ 42~ cm.}}}}

Similar questions