Math, asked by rounick7941, 1 year ago

The curved surface area of a right circular cone is 600 cm 2 and its slant height is 30 cm. calculate its capacity.

Answers

Answered by Golda
0
Solution :-

Curved surface area of right circular cone = πrl

⇒ 600 = (22*r*30)/7

⇒ r = (600*7)/(22*30)

⇒ r = 4200/660

r = 6.36 cm

We know that slant height² = radius² + vertical height² 

⇒ l² = r² + h²

⇒ (30)² = (6.36)² + h²

⇒ 900 = 40.45 + h²

⇒ h² = 900 - 40.45

⇒ h² = 859.55

⇒ h = √859.55

⇒ h = 29.31 cm

Volume of the cone = 1/3*πr²h

⇒ 1/3*22/7*6.36*6.36*29.31

⇒ 26082.71/21

⇒ 1242.03 cm³

Answer.
Answered by wifilethbridge
0

Answer:

1242.033 cubic cm.

Step-by-step explanation:

Curved surface area of right circular cone = \pi rl

Since we are given that The curved surface area of a right circular cone is 600 sq.cm.

Slant height l = 30

\Rightarrow 600 = \frac{22}{7} \times r \times 30

\Rightarrow 600 = \frac{660}{7} \times r

\Rightarrow 600 \times  \frac{7}{660} = r

\Rightarrow 6.36 = r

Thus the radius is 6.36 cm

Now , We know that \text{slant height}^2= radius^2+ height^2

l^2= r^2+ h^2

30^2= 6.36^2+ h^2

900= 40.45+ h^2

900-40.45= h^2

859.55= h^2

\sqrt{859.55} = h

29.31= h

Thus the height of cone is 29.31 cm

Formula of Volume of the cone =\frac{1}{3}\pi r^{2} h

So, volume of given cone=\frac{1}{3}\times \frac{22}{7} \times 6.36^{2} \times 29.31

                                          =1242.033

Hence the volume of the cone is 1242.033 cubic cm.

Similar questions