The curved surface area of a right circular cone is 600 cm 2 and its slant height is 30 cm. calculate its capacity.
Answers
Answered by
0
Solution :-
Curved surface area of right circular cone = πrl
⇒ 600 = (22*r*30)/7
⇒ r = (600*7)/(22*30)
⇒ r = 4200/660
r = 6.36 cm
We know that slant height² = radius² + vertical height²
⇒ l² = r² + h²
⇒ (30)² = (6.36)² + h²
⇒ 900 = 40.45 + h²
⇒ h² = 900 - 40.45
⇒ h² = 859.55
⇒ h = √859.55
⇒ h = 29.31 cm
Volume of the cone = 1/3*πr²h
⇒ 1/3*22/7*6.36*6.36*29.31
⇒ 26082.71/21
⇒ 1242.03 cm³
Answer.
Curved surface area of right circular cone = πrl
⇒ 600 = (22*r*30)/7
⇒ r = (600*7)/(22*30)
⇒ r = 4200/660
r = 6.36 cm
We know that slant height² = radius² + vertical height²
⇒ l² = r² + h²
⇒ (30)² = (6.36)² + h²
⇒ 900 = 40.45 + h²
⇒ h² = 900 - 40.45
⇒ h² = 859.55
⇒ h = √859.55
⇒ h = 29.31 cm
Volume of the cone = 1/3*πr²h
⇒ 1/3*22/7*6.36*6.36*29.31
⇒ 26082.71/21
⇒ 1242.03 cm³
Answer.
Answered by
0
Answer:
1242.033 cubic cm.
Step-by-step explanation:
Curved surface area of right circular cone =
Since we are given that The curved surface area of a right circular cone is 600 sq.cm.
Slant height l = 30
Thus the radius is 6.36 cm
Now , We know that
Thus the height of cone is 29.31 cm
Formula of Volume of the cone =
So, volume of given cone=
=
Hence the volume of the cone is 1242.033 cubic cm.
Similar questions