Math, asked by yupBTS, 10 months ago

The curved surface area of a right circular cylinder is 176 sq cm and it height is 2 cm. Find the radius of the base?​

Answers

Answered by pandaXop
54

Radius = 14 cm

Step-by-step explanation:

Given:

  • Curved surface area of right circular cylinder is 176 cm².
  • Measure of height of cylinder is 2 cm

To Find:

  • What is the measure of radius of base ?

Solution: Let r be the radius of cylinder.

As we know that

CSA of Cylinder = 2πrh

A/q

  • CSA = 176 cm²

\implies{\rm } 176 = 2πrh

\implies{\rm } 176 = 2(22/7)(r)(2)

\implies{\rm } 176 = 44/7(2r)

\implies{\rm } 176 = 88r/7

\implies{\rm } 176 \times 7 = 88r

\implies{\rm } 1232 = 88r

\implies{\rm } 1232/88 = r

\implies{\rm } 14 = r

Hence, measure or radius of base of cylinder is 14 cm.

Answered by nisha382
131

Answer:

\huge\bold\red{Answer:-}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

{\green{\bold{\underline{\underline{Given:-}}}}}

  • Curved surface area of a right circular cylinder is 176 sq cm
  • \bold{height \ of \ the \ cylinder \ is \ 2cm}

{\pink{\bold{\underline{\underline{To\:find:-}}}}}

  • \bold{The \ radius \ of \ the \ base}

{\blue{\bold{\underline{\underline{Solution:-}}}}}

\boxed{CSA\:of\:cylinder=2πrh}

\bold{where}π=\mathsf{ \dfrac{22}{7}}

\bold{\: \: \: \: \: \: \: \: \: \: \: \: r=radius}

\bold{\: \: \: \: \: \: \: \: \: \: \: \: h=height}

\bold{Putting \ the \ given \ value \ we \ get}

\bold{\: \: \: \: \: \: \: \: \: \: \: \: CSA=2πrh}

\implies\bold{176=2×22/7×r×2}

\implies\bold{176=88r/7}

\implies\bold{r=176×7/88}

\implies\bold{r=2×7}

\implies\bold{r=14cm}

•°•\bold{radius \ of \ the \ base \ is \ 14 \ cm}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions