Physics, asked by ADITYABHAIYT, 1 day ago

The curved surface area of a right circular cylinder is 264 cm2 and its volume is 924 cm3 , find the height of the cylinder.

DONT SPAM❌
ONLY MODERATERS WILL ANSWER.​

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of cylinder be r cm.

  • Height of cylinder be h cm.

Given that,

  • Curved Surface Area of cylinder = 264  cm^2

We know,

Curved Surface Area of cylinder of radius r and height h is given by

\boxed{ \rm{ \:CSA_{(Cylinder)} = 2 \: \pi \: r \: h \: }} \\

So,

\rm \: 2 \: \pi \: r \: h \:  =  \: 264 \: -  -  - (1) \\

Further, given that

  • Volume of cylinder = 924  cm^3

We know,

Volume of cylinder of radius r and height h is given by

\boxed{ \rm{ \:Volume_{(Cylinder)} = \pi \:  {r}^{2} \: h \: }} \\

So,

\rm \:  \pi \:  {r}^{2} \: h \: =   \: 924 -  -  - (2) \\

On dividing equation (2) by (1), we get

\rm \: \dfrac{ \pi \:  {r}^{2} \: h \: }{2 \: \pi \: r \: h \:}  = \dfrac{924}{264}  \\

\rm \: \dfrac{ r }{2}  = \dfrac{7}{2}  \\

\rm\implies \:r \:  =  \: 7 \: cm \\

On substituting the value of r in equation (1), we get

\rm \: 2 \times \dfrac{22}{7}  \times 7 \times h \:  =  \: 264

\rm \: 44h \:  =  \: 264 \\

\rm\implies \:h \:  =  \: 6 \: cm \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions