Math, asked by archanadubeyad1987, 18 days ago

The curved surface area of a right circular cylinder is 44000m2 if the circumference of its base is 110 cm then it's height is

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of cylinder be r m

  • Height of cylinder be h m

Now, given that

  • Circumference of base =110 cm = 1.1 m

\rm\implies \:2\pi \: r \:  =  \: 1.1 -  -  - (1) \\

Further given that, Curved Surface Area of cylinder is 44000 m^2.

\rm \: CSA_{(cylinder)} = 44000 \:  {m}^{2}  \\

We know, Curved Surface Area of cylinder of radius r and height h is given by

\color{green}\boxed{ \rm{ \:CSA_{(cylinder)} \:  =  \: 2 \: \pi \: r \: h \: }} \\

So, using this result, we get

\rm \: 2 \: \pi \: r \: h \:  =  \: 44000 \\

\rm \: 1.1 \times h \:  =  \: 44000 \\

\rm\implies \: \: h \:  =  \: 40000 \: m \\

So, height of cylinder, h = 40000 m

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by βαbγGυrl
10

Answer:

  • Refer the attachment:)

_____________________________

Attachments:
Similar questions