Math, asked by anita4857, 1 year ago

The curved surface area of a right circular cylinder is half of its total surface area. Find the radius of the base of the cylinder if total surface area is 616cm2

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{The curved surface area of a right circular cylinder}

\textsf{is half of its total surface area and}

\textsf{total surface area is 616 square cm}

\textbf{To find:}

\textsf{Radius of the base of the cylinder}

\mathsf{}

\textbf{Solution:}

\textsf{Let r and h be radius and height of the given cylinder respectively}

\textbf{Formula used:}

\boxed{\begin{minipage}{8cm}$\\\textsf{Curved surface area of cylinder}\mathsf{=2\,\pi\,r\,h\;square\;units}\\\\\textsf{Total surface area of cylinder}\mathsf{=2\,\pi\,r(h+r)\;square\;units}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{C.S.A=\dfrac{1}{2}{\times}T.S.A}

\mathsf{C.S.A=\dfrac{1}{2}{\times}616}

\mathsf{C.S.A=308\,cm^2}

\mathsf{2\,\pi\,r\,h=308}

\implies\boxed{\mathsf{2\pi\,r\,h=308}}

\mathsf{T.S.A=616\;cm^2}

\mathsf{2\,\pi\,r(h+r)=616}

\mathsf{2\,\pi\,r\,h+2\,\pi\,r^2=616}

\mathsf{308+2\,\pi\,r^2=616}

\mathsf{2\,\pi\,r^2=616-308}

\mathsf{2\,\pi\,r^2=308}

\mathsf{\pi\,r^2=154}

\mathsf{\dfrac{22}{7}{\times}r^2=154}

\mathsf{r^2=\dfrac{7{\times}154}{22}}

\mathsf{r^2=7{\times}7}

\mathsf{r^2=49}

\implies\boxed{\mathsf{r=7\;cm}}

\textbf{Answer:}

\textsf{Radius of base of the cylinder is 7 cm}

\textbf{Find more:}

Volume of a cylinder is 2376cm cube. If the diameter of its base is 12 cm,then find its height

https://brainly.in/question/2661379

The curved surface area of a cylinder is 1320 cm² and its base had diameter 21 cm. Find the height and the volume of the cylinder.[Use π = 22/7]

https://brainly.in/question/15911784

Similar questions