Math, asked by miradelhi6666, 3 months ago

The curved surface area of a right circular cylinder of height 14 cm is 88 cm2

. Find the diameter of the base of the cylinder.​

Answers

Answered by ShírIey
99

\frak{Given}\begin{cases}&\sf{Height\; of\; cylinder = \frak{14\;cm}}\\ \ &\sf{CSA\; of\; cylinder=\frak{88\:cm^2}}\end{cases}

Need to find: The diameter of the base of the cylinder.

❍ Let the radius of the right circular cylinder be r cm respectively.

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Curved\; Surface\;Area\: :}}⠀⠀⠀⠀

To calculate CSA (Curved Surface Area) of the cylinder formula is Given by :

\bf{\dag}\;\;\underline{\boxed{\sf{CSA_{\;(cylinder)} = 2\pi r h}}}

where,

  • r is radius
  • h is height (14 cm)
  • CSA is 88 cm²

\rule{100px}{.3ex}

:\implies\sf 2 \pi r h = 88\\\\\\:\implies\sf 2\times  \dfrac{22}{7}\times r \times (14) = 88 \\\\\\:\implies\sf r = \cancel\dfrac{88 \times 7}{2 \times 22 \times 14}\\\\\\:\implies{\underline{\boxed{\frak{\pink{r = 1\; cm}}}}}\;\bigstar

\therefore{\underline{\textsf{Hence, \; radius\;of\; the\: cylinder\;is\:\textbf{1 cm}.}}}

\rule{250px}{.3ex}

\bigstar\;\boxed{\sf{Diameter = 2 \times Radius}}

↠ Diameter = 2 × Radius

↠ Diameter = 2 × 1

↠ Diameter = 2 cm

\therefore{\underline{\textsf{Hence, \; Diameter\; of\;the\;base\;of\: cylinder\;is\:\textbf{2 cm}.}}}


MяƖиνιѕιвʟє: Osmm.
MяƖиνιѕιвʟє: Osmm.
ShírIey: Thankiew! ^•^
Answered by Anonymous
27

Answer:

Given :-

CSA of cylinder = 88 cm²

Height of cylinder = 14 cm

To Find :-

Diameter

Concept :-

In order to solve we need to first find the radius of the cylinder. We may find the radius by assuming the radius as r and by putting the value in CSA. We need to find Diameter by multiplying radius by 2

We need to use some formula

CSA = 2πrh

Diameter = 2 × Radius

Solution :-

Let the radius be r

 { \boxed { \implies { \sf \: 88 = 2 \times  \dfrac{22}{7}  \times r \times 14}}}

{ \boxed{ \implies{ \sf \: 88 = 2 \times 22 \times r \times 2}}}

 { \boxed{ \implies { \sf \: 88 = 88r}}}

 { \boxed{ \implies{ \sf \: r =  \dfrac{88}{88} }}}

{ \textsf{ \textbf{ \underline{Radius \:  = 1 \: cm}}}}

Finding Diameter

{ \boxed{ \implies{ \sf \: Diameter = 2 \times r}}}

{ \boxed { \implies{ \sf \: Diameter = 2 \times 1}}}

 { \textsf{ \textbf{ \pink{ \underline{Diameter = 2 \: cm}}}}}

Hence,

  • Diameter of base is 2 cm

MяƖиνιѕιвʟє: Osm.
Similar questions