Math, asked by rajmama718, 2 days ago

The curved surface area of cone is 220cm² radius is 7cm what is its height
pls answer​

Answers

Answered by HelpingNewton7
0

Answer:

10 cm

Step-by-step explanation:

Radius of cone (r) = 7 cm

Curved surface area of cone = 220 sq cm

=> πrl = 220

=> 22/7 × 7 ×l = 220

=> 22× l. =220

=> l. = 220/22 = 10 cm

Therefore slant height of the cone will be 10 cm

I hope this will help you, thank you

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

Slant height of cone = l cm

Height of cone = h cm

Given that,

Radius of cone, r = 7 cm

Curved Surface Area of cone = 220 cm²

We know, Curved Surface Area of cone of slant height l and radius r is given by

\boxed{ \rm{ \:CSA_{(Cone)} \:  =  \: \pi \: r \: l \:  \: }} \\

So, on substituting the values, we get

\ \: 220 = \dfrac{22}{7}  \times 7 \times l \\

 \: 220 = 22 \times l \\

\implies \:l \:  =  \: 10 \: cm \\

Now, we know slant height l, height h and radius r are connected by the relationship

 \:  {l}^{2} =  {r}^{2} +  {h}^{2} \\

So, on substituting the values of l and h, we get

 \:  {10}^{2} =  {7}^{2} +  {h}^{2} \\

\rm \: 100 = 49 +  {h}^{2}  \\

\rm \: 100 - 49  = {h}^{2}  \\

\rm \:  {h}^{2} = 51 \\

\rm \: h =  \sqrt{51}  \\

So,

\rm\implies \:\boxed{ \rm{ \:h \:  =  \:  \sqrt{51} = 7.14 \: cm \:  \: }} \\

\rule{190pt}{2pt}

Note :-

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:7.14 \:\:}}}\\ {\underline{\sf{7}}}& {\sf{51.0000}} \\{\sf{}}& \underline{\sf{49 \:  \:  \:  \:  \:  \:  \:  \: }} \\ {\underline{\sf{141}}}& {\sf{200 \:  \:  \: }} \\{\sf{}}& \underline{\sf{141 \:  \:  \: }} \\ {\underline{\sf{1424}}}& {\sf{ \:  \: \:\:5900}} \\{\sf{}}& \underline{\sf{ \:  \:  \:  \: 5696}} \\ {\underline{\sf{}}}& {\sf{ \:  \:  \:  \:  \:  \: 204}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions